DRTHOPAEDIC CTURE FR MANAGEMENT

Orthopaedic Fracture Management MSK Galaxy Course Denver, Colorado June 22-26, 2022 Tom Gocke, DMSc, PA-C, DFAAPA Orthopaedic Educational Services, Inc Dept Orthopaedic Surgery, WVUMedicine

Faculty Disclosures

Orthopaedic Educational Services, Inc.

Financial Intellectual Property No off-label product discussions

American Academy of Physician Assistants

Financial Splinting/Casting Workshop Director, Guide to the MSK Galaxy Course JBJS- JOPA Journal of Orthopaedics for Physician Assistants- Deputy Associate Editor American Academy of Surgical Physician Assistants – Editorial Review Board

LEARNING OBJECTIVES

At the end of this lecture attendees will be able to :

- Describe fractures based on location, angulation, displacement & soft tissue injuries
- Recognize and describe factors associated with acute fractures
- Describe exam maneuvers essential for acute fractures
- Describe essential immobilization techniques for acute fractures
- Recognize and describe differences in fractures that require emergent treatment vs those that can be sent home and follow up in the office
- Recognize and treat Fractures of the Upper Extremity (UE)
- Recognize and Treat Fractures of the Lower Extremity (LE)

PAY ATTENTION

- Open Fractures
- Compartment Syndrome
- Necrotizing Fasciitis
- Long Bone Fractures
- Dislocations Hip, Knee, Ankle, Shoulder Fx/Dislocation

OPEN FRACTURES

- Open Fractures
 - Frequently check pules
 - Frequently check sensation/motor
 - Tetanus status- "don't know gets a booster" TDap
 - Circumstances
 - Dirty wounds need special attention
 - Farm-Water-Work environments
 - Amount & duration of contamination
 - Prior ABX
 - Travel time

OPEN FRACTURES

- Pay attention to wound Size
 - Indication of injury energy
 - High energy leads to more damage
 - High energy think compartment syndrome
 - Hand
 - Forearm
 - Thigh/Gluteal
 - Low Leg
 - Foot
 - High energy think associated Injuries

GUSTILO AND ANDERSON CLASSIFICATION

Skin injuries associated with Open Fractures

- Grade 1 skin opening of 1cm or less, minimal muscle contusion, usually inside out mechanism
- Grade 2- skin laceration 1-10cm, moderate soft tissue damage
- Grade 3-extensive soft tissue damage (>10cm)
 - Grade 3a-extensive soft tissue damage (>10cm) but adequate bone coverage
 - Grade 3b-extensive soft tissue injury with periosteal stripping requiring flap advancement or free flap
 - Grade 3c- Includes 3b injury plus vascular injury requiring repair

OPEN FRACTURES

Antibiotic Coverage

- Cover for Gram + organisms <2 hours
- Cefazolin most common
 - <50kg: 1 gram IV q 6-8 hrs
 - 50-100kg: 2 gram IV q 6-8 hrs
 - >100kg: 3gram IV q 6-8 hrs
 - PCN allergy- Clindamycin 900mg IV q 8 hr
 - Continue for 48hrs or 24 hours after wound coverage

Grade 1 - Cefazolin popular choice

Grade 2- Cefazolin +/- Aminoglycoside
Gentamicin 5mg/kg or Tobramycin 1mg/kg

Grade 3 Cefazolin +Aminoglycoside

- Gentamicin 5mg/kg or Tobramycin 1mg/kg
- High contamination potential
- Lake/pond/farm
 - Anaerobic organisms- high dose PCN

OPEN FRACTURE REMINDERS

- Complete Physical Exam "man scan"
- Appropriate Imaging/X-rays
- Frequent follow up exams
- Frequent neuro/vascular exams
- Adequate Immobilization

FRACTURE DESCRIPTION

OS CO

Fx location

- Open v. Closed:
 - Gustilio-Anderson classification
- Neurovascular status
- Angulation: direction fx apex
- Displacement vs. Non-displaced
- Comminution
- Impaction
- Rotation
- Articular extension

- Acute Compartment Syndrome is a CLINICAL diagnosis
- ACUTE SURGICAL EMERGENCY
- Increased pressure in confined anatomic space that can irreversibly damage tissue
- Two Causes
 - Constriction: Application of compression dressing/splint that does not allow tissue to swell or expand
 - Expanding Volume: traumatic tissue injury in confined space with bleeding/edema
 - Blunt trauma Crush injury
 - Long bone fx (closed) Tibia most common
 - Revascularization edema
- Forearm Fx, Hand, Tibia, Foot, Gluteal, Peds supracondylar elbow fx

- Mechanism
 - Bleeding 2nd to trauma causes increased pressure in compartments
 - Venous drainage in compartment impaired by increased pressure
 - Capillary beds become congested and loose ability to perfuse muscle/nerve tissue and ischemia begins
 - Tissue eventually begins to leak fluid
 - Arterial supply irreversible impaired and tissue death occurs (if pressure not relieved within 4-8 hrs)

- Symptoms
 - Recognized possibility of compartment syndrome based on trauma to low leg
 - 4 P's
 - Pain- pain out of proportion to apparent injury
 - Paresthesias decreased sensation usually in Deep Peroneal nerve distribution (first)
 - Paralysis loss of motor function 2nd to increased pain, compartment pressures and neurologic impairment
 - Pulselessness very late sign
 - Arterial occlusion that results from marked pressure increase within compartment
 - Swollen low leg/calf
 - Shiny skin appearance
 - Painful and/or diminished ROM ankle/toes

- Treatment:
 - Recognize possibility of compartment syndrome
 - X-ray low leg if suspect fracture
 - Compressive dressing/splint:
 - loosen dressing and spread splint to allow tissue expansion
 - Document neuro/vascular status frequently Q 1-2 hr
 - Note skin changes
 - Elevate extremity above heart (ICE)
 - Admit patient for monitoring
 - Serial Compartment Pressure passements
 DON'T DELAY SURGERY

NECROTIZING FASCIITIS

Organisms

- Group A Streptococcus
- Vibrio vulnificus- water borne
- Common Entry
 - Cuts, puncture wounds, surgical wounds
 - Burns
 - Insect bites
- Symptoms
 - Red, swollen
 - Painful skin & worse pain with motion
 - Blisters, Ulcers
 - Sepsis

- Treatment
 - Early recognition
 - Aggressive Antibiotic therapy
 - Aggressive Surgical debridement
 - Control medical conditions that can exacerbate infection

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

IMMOBILIZATION

IMMOBILIZATION

Importance of Immobilization

Reduce Blood Loss

- Femur Fx up to 1500 ml blood loss
- Tibial Fx up to 1000ml blood loss
- Pain reduction
- Reduce damage to soft tissues
- Reduce or minimize compartment syndrom
- Reduce spread if infection

Reduce Fx to minimize tissue injury

IMMOBILIZATION

Fracture Blisters

- Occur 2nd to higher energy fx
- Skin adheres to bone and little subQ fat
- Resembles 2º burn (clear v. bloody
- Develop 6-48 hrs
- Staph/Strep colonization
- Impacts treatment options
- No consensus on Treatment
 - Dry dressing-Xeroform-Silvadene
- Delays Surgery average 7 days
- Infection complication

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

UPPER EXTREMITY FRACTURES

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

CLAVICLE FX

Clavicle Fracture

Lateral

Bone –

- Triangular shaped- medial 1/3
- Tubular shaped- middle 1/3 Flat shaped – lateral 1/3
- Most fractures occur junction of middle and distal 1/3 clavicle
 - Occurs due to change in geometry of bone
 - Thinnest part of bone
 - No muscle and ligament coverage in this area

Craig EV: Fractures of the shoulder: Part II. Fractures of the Clavicle, in Rockwood CA, Green DP, Bucholz RW, *Rockwood and Green's Fractures in Adults*, ed 3. Philadelphia, PA: JB Lippincott, 1991, vol 1 pp 928-990

Middle third

Medial third

Cro

Midshaft Clavicle Fracture

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

MID-SHAFT CLAVICLE FRACTURE

Factors in surgical management

- Open or closed fracture
- Pain
- Displaced fractures (>1.5 cm)/comminuted fx
- Shoulder girdle shortening (>2 cm)
- Skin impairment
- Neuro or vascular injury
- Loss Abduction strength
- Greater cosmetic deformity/failed conservative management
- Greater demand for overhead activity

Ahn L, Sheth U, Mid-Shaft Clavicle Fractures, Orthobullets.com, 10/28/2020, https://www.orthobullets.com/trauma/1011/midshaft-clavicle-fractures, accessed November 17, 2020

MID-SHAFT CLAVICLE FRACTURE

Treatment Options:

- Indications Non-op care
 - Minimally displaced, < 1.5cm shortening, medically unfit for surgery
- Non-surgical management
 - Sling vs. Figure 8
 - Compliance issues
 - Less discomfort with sling
 - Pain medication
 - Activity Limitations
 - F/U 1-2 weeks

Honeycutt MW, Fisher M, Riehl JT, Orthopaedic Tips: A Comprehensive Review of Midshaft Clavicle Fractures, JBJS JOPA 2019;7(3):e0053

Andersen et al: Treatment of Clavicle Fractures: Figure 8 vs. Simple Sling. Acta Orthop Scand 1987;58:71-74

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

HUMERUS FX

PROXIMAL HUMERUS FRACTURES

Epidemiology

- Common fx in older adults >65 yr. old
- 2-part fx most common (Surgical neck & Greater Tubercle)
- Blood supply key to overall healing process
- High-rate osteonecrosis w/ 4-part Fx
- Female > male

Factors contributing to Proximal Humerus fractures:

- Age/sex
- Bone quality osteoporosis
- Fracture displacement
- Diabetes

Attum B, Thompson JH. Humerus Fractures Overview. [Updated 2020 Aug 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.ruh.gov/books/NBK482281/

Pencle FJ, Varacallo M. Proximal Humerus Fracture. [Updated 2020 Aug 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan Available from: https://www.ncbi.nlm.nih.gov/books/NBK470346

Proximal Humerus Fractures

Neer Classification

Anatomic Segments

- Shaft-Articular Head-Greater Tubercle-Lesser Tubercle
- Parts considered: >1 cm displaced, 45 degrees angulation
 - 2-part
 - Articular component- Fx line thru anatomic neck
 - Shaft Component Fx line thru surgical neck most common
 - 3-Part
 - Articular surface, thru anatomic neck, Humeral shaft & greater tubercle
 - Articular surface, thru anatomic neck, Humeral shaft & lesser tubercle
 - 4-Part
 - Variation anatomic/surgical neck, great/lesser tubercle
 - Fracture / Dislocation

Triplet J, Proximal Humerus Fractures, Orthobullet.com, updated 7/19/2020 <u>https://www.orthobullets.com/trauma/1015/proximal-humerus-fractures</u>, accessed November 15, 2020

PROXIMAL HUMERUS FX

Proximal Humerus

- Treatment considerations-
 - Multifactorial
 - Age
 - Fracture type
 - Pt expectations
- Treatment options
 - Non-op
 - ORIF
 - Hemiarthroplasty
 - Reverse TSA

SITTING

HUMERUS FX

PROXIMAL HUMERUS FRACTURE

Emergent Treatment

- Majority treatment "hanging sling"
- Pain management
- Sleeping postures
- Early motion-elbow/Shoulder

HUMERAL SHAFT FRACTURE

- Epidemiology
 - Usual treatment is non-operative
 - High Energy mechanism
 - Low Energy: high suspicion for pathology fx
 - Primary Mechanism of injury
 - Direct blow transverse or comminuted fracture
 - MVA
 - Indirect blow spiral or oblique fracture
 - Fall elderly more common
 - Throwing motion—less common
 - Concern for Radial Nerve injury

Bounds EJ, Frane N, Kok SJ. Humeral Shaft Fractures. [Updated 2020 Aug 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK448074/</u>

HUMERAL SHAFT FRACTURE

Picture courtesy T Gocke, PA-C

Humeral Shaft Fracture

Holstein-Lewis Fx

- Accounts for 7% all Humeral shaft fx
- Low Energy injury mechanism
- Spiral Fx
- Middle and Distal Humerus fx have higher risk of developing radial nerve palsy injuries
- Increased risk Radial nerve palsy compared to other Humerus shaft fx.
- Fractures occurs point where Radial nerve runs thru the intermuscular septum
- Radial nerve contact bone and is less mobile
- Distal fragment displaced proximal and Radial nerve entrapping or lacerating the Radial nerve
- Outcome was excellent regardless of treatment (operative v. n on-op)
 - Fracture healing
 - Radial nerve palsy recovery
 - Return of function ability

Ekholm R, Ponzer S, Törnkvist H, Adami J, Tidermark J. The Holstein-Lewis Humeral Shaft Fracture: Aspects of Radial nerve injury, Primary treatment, and Outcome. J Orthop Trauma. 2008 Nov-Dec;22(10):693-7.

Humeral Shaft Fracture

- Treatment options- Closed Fracture
 - Frequent follow up and adjustment of hanging arm cast/brace/splint
 - Xray weekly x 3 weeks
 - Begin early wrist/hand ROM
 - Acceptable post reduction alignment
 - <20° anterior angulation
 - <30° varus
 - <15° malrotation
 - 3cm shortening
- Surgical indications
 - Open Fx\Polytrauma
 - Vascular injury
 - Floating Elbow
 - Obesity immobilization difficulty

SUPRACONDYLAR HUMERUS FX

BONY LANDMARKS

SUPRACONDYLAR HUMERUS FX

Epidemiology

• 30% all Elbow fx

- Supracondylar
- Single Column fx- Lateral
- Bi-column fx- heavy damage
- Young men & older female
- Falls from standing height/high energy
- Assoc Injuries
 - Elbow dislocation
 - Terrible Triad
 - Floating Elbow
 - Volkmann Contracture missed forearm compartment syndrome

SUPRACONDYLAR HUMERUS FX

Exam

- Neurovascular- assess frequently
 - High suspicion for vascular injury
- Grossly unstable fx limit motion

Acute treatment

- Compromised Neurovascular
 - Emergent vascular consult/CTA
 - Concern for forearm compartment syndrome
 - Admit
- Long-arm posterior splint vs Dbl Sugartong
 - <90º flexion
- Sling
- Pain management
- Follow up 3-5 days
- Most all elbow Fx require surgery

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

ELBOW FX --RADIAL HEAD --OLECRANON

RADIAL HEAD FX

RADIAL HEAD FX

Epidemiology

- Most common elbow fx
- Injury mechanism- FOOSH, elbow extended & forearm pronated
- 35% assoc. injuries
 - LCL sprain (80%)
 - Essex-Lopresti injury
 - Fx Coronoid/Olecranon- ELBOW DISLOCATION

Exam

- Swollen & tender lateral elbow
- Pain with Pronation/Supination

RADIAL HEAD FX

Radiographs

- AP, lateral & radial head view
 - Radial head view: oblique lateral
 - Helps see subtle fx radial head
 - Check for Fat Pad signs
 - Fx Tolerances: Rule of 3's (Radin & Riseborough, JBJS-A, 1966)
 - 1/3 radial head fx
 - 3mm displacement/diastasis
 - >30 degrees angulation
- CT Scan
 - Needed with comminuted fx radial head
 - Helps with surgical preplanning

RADIAL HEAD FRACTURE

Treatment

- Sling vs Sugar-tong splint
 - Sling low demand patient/ elderly
 - Sugar-ting High demand
 - Athletes, laborers, non-compliant, failed sling
 - Sugar-tong gets a sling
 - Pain management
 - Limit Activity
 - Follow up 1 week
 - May begin ROM exercises
 - Will need serial x-rays till healed
- All displaced comminuted Fx will require surgical stabilization or Radial head replacement

Epidemiology

- Bimodal injury distribution
 - Young- High energy
 - Elderly fall standing height
- Injury mechanism-
 - Direct blow leads to comminuted fx
 - FOOSHE Transverse fx

• 35% assoc. injuries

- LCL sprain (80%)
- Essex-Lopresti injury
- Fx Coronoid/Olecranon

Exam

- Swollen & tender lateral elbow
- Pain with Pronation/Supination

Radiographs

- AP, & Lateral Elbow
- Fracture pattern
 - Avulsion
 - Transverse
 - Oblique
- CT Scan
- Exam
 - Limited Elbow Flex\Ext ROM
 - Palpable defect olecranon
 - Skin lesion

50

Treatment

- Most Olecranon fx will need surgical stabilization
 - Stabilization allows for earlier ROM
- Immobilize in Long-arm posterior splint
 - Elbow flexed to 45-90^o
- Sling
- Pain management
- Follow up 1 week

FOREARM FX

FOREARM FRACTURES

Etiology

- Injury Mechanism:
 - Direct blow- High energy vs. ground fall
 - FOOSH w/ pronated hand/forearm =- axial load
 - Car accident
 - Gunshot wounds/Farm-Industrial
 - Significant soft-tissue injury
 - Open Fx with nerve vascular injury
 - Refer to Gustilo classification (classification of open fractures)
- Delays in surgery lead to increased risk of proximal radioulnar synostosis

- Symptoms
 - gross deformity, pain, swelling
 - loss of forearm and hand function
- Physical exam
 - Check forearm compartmentS
 - High suspicion compartment syndrome
 - Pain with passive stretch of digits
 - Pain out of proportion
 - Assess radial and ulnar pulses
 - Check Median, Radial, and Ulnar nerve function
- Neurovascular
 - Median nerve: finger flex/Make a fist
 - AIN- "OK" sign (Flexor Pollicis Longus)
 - Radial nerve: Wrist/Finger extension
 - PIN: "Thumbs up" sign (Extensor Pollicis Longus)
 - Ulnar Nerve: Finger ABD/ADD
- Assess elbow & wrist for associated injury

FOREARM FRACTURES

R

COURTO

Radiographic Exam

- AP/Lateral/Oblique views
 - AP & lateral:
 - Forearm to include wrist and elbow
 - radial head will bisect Capitellum
 - good radiocapitellar apposition on alignment
- Radial fx location predictive of DRUJ instability
 - >7.5 cm above DRUJ
 - higher likelihood of instability at DRUJ 55%
- Look at alignment of distal ulna lateral
- Ulna should bisect base of 4th and 5th metacarpal
- Radius & ulna should be aligned same plane

RADIUS & ULNA SHAFT FX

Treatment

- Nonoperative ADULTS
 - Isolated, nondisplaced fractures
 - Nightstick fx isolated distal 2/3 ulna shaft fx
 - < 50% displacement and
 - < 10° of angulation
 - High union rates
 - Sugar-tong cast or functional fx brace
 - Interosseous mold: hand supinated, and forearm flattened

Treatment – ADULTS

- Sugar-tong splint & Sling
- Pain management
- Follow up 1 week
- Operative Open Reduction Internal Fixation (ORIF)
 - Displaced distal ulna & Proximal ulna fxs
 - ALL radial shaft fxs
 - ALL both bone fxs
 - ALL open fractures
 - Segmental bone loss
 - Comminuted fx >1/3 length of shaft
 - Forearm nonunion
 - Most important structure to restore: radial bow
 - External Fixation temporary/open wounds

 (\mathbf{L})

Pediatric Fx

- More growth & remodeling potential the better the outcome
- Most will be reduced with good alignment
- Reduction undersedation and bedside Fluoro or Anesthesia with Fluoro
- Long arm cast vs sugar-tong with a wrap over
- Serial follow- ups & x-rays
- Surgery
 - Open fx
 - Neurovascular compromise

MONTEGGIA FX & GAELEAZZI FX

MONTEGGIA & GALEAZZI FX – MU-GR

Mu-**GR**

ullet

Radius Fx

DRUJ instability/Injury

Monteggia FX

MU-Gr

- Ulna Fx with Radial head injury
 - Radial head FX
 - Radial head Dislocation

GALEAZZI FRACTURES

- Galeazzi Fx
 - Defined as: Fracture mid to distal 1/3 radius shaft with dislocation at Distal Radioulnar Joint (DRUJ)
 - Dorsal dislocation of distal ulna most common DRUJ disruption
 - Avulsion fx at ulnar styloid is tip to be suspicious for DRUJ injury
 - Majority unstable if radial fracture is <7.5 cm from demarcation (closer to the wrist)
 - 7% all forearm fractures
 - Higher risk: sports, osteoporosis, post-menopausal
 - 40% complication rate, 2-10% mal/non-union rate
 - 1 in 4 Radial shaft fx is a true Galeazzi fx.
 - Falls
 - FOOSH wt on the pronated hand at time of injury causes sublux DRUJ & dorsal angulation of radial fx
 - Location of radial fx in proximity to DRUJ has some bearing on potential for DRUJ instability
 - More distal fracture = higher risk of instability

GALEAZZI FRACTURES

- Galeazzi Fracture
 - Radius fracture and DRUJ injury
 - Ulnar styloid fx
 - widening of DRUJ on AP view
 - dorsal or volar displacement ulna
 - Best seen lateral view
 - radial shortening (≥5mm)

Dorsal displacement - ulna

Rad

MONTEGGIA FRACTURE

Monteggia Fracture

 Defined as: Proximal 1/3 ulnar fracture with associated radial head dislocation

Etiology

- More common in children peak incidence 4-10yo
- Rare in adults
- Delayed diagnosis >2-3 weeks = increased risk complication

Injury Mechanism

- Fall with blow to forearm, Elbow /forearm Hyperpronated
- Energy transmitted thru Interosseous ligament
- Causes rupture of proximal Quadratus & Annular Ligament

MONTEGGIA FRACTURE

Radial Head dislocation

Proximal Ulnar Shaft fx

Photo courtesy TGocke, PA-C

MONTEGGIA FRACTURES

Treatment

- Closed reduction temporary solution
 - Relax tension on soft-tissues
 - Radial head may not reduce 2nd to Annular ligament entrapment.
 - Splint/Cast: long arm
 - Forearm neutral to supinated position
 - Elbow flexed to 100 degrees to relax biceps pull
- Surgical correction is primary means of treatment
 - Unstable fracture
 - Plate fixation Ulna & reduce Radial head
 - Long-arm splint, hand supinated
 - Concern for post-op elbow stiffness
DISTAL RADIUS FX

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

DISTAL RADIUS FRACTURES

Epidemiology

- Distal Radius (DR) [& Ulna] fx account for 25% all UE fx
- DR fx increasing 2%/yr men, 3.4%/yr female 50-59 yrs of age
- Bimodal distribution: younger males and older females
 - Kids<18: Peak 12-14 yrs boys, 10-12 old girls
 - Decreased level skeletal mineralization & density w/ puberty
 - Adults > 50: Peak Caucasians >65 yrs old
 - Osteoporosis common risk factor
 - Prior fx > age 50
 - Steroid use
 - >75 yrs old w/ dementia
 - Intra-articular fx more common in females w/ DM

• Contributing Factors: Obesity, osteoporosis, DM, Tobacco use

Meaike JJ, Kakar S, management of Comminuted Distal Radius Fractures: A Critical Review, JBJS Reviews 2020;8(8)e20.00010

Porrino JA, Maloney E, Scherer K, et al Fracture of the Distal Radius: Epidemiology and Premanagement Radiographic Characterization, American Journal of Roentgenology 2014 203:3, 551-559

Corsino CB, Reeves RA, Sieg RN, Distal Radius Fractures, StatPearls, Treasure Island, FL, StatPearls Publishing Jan 2020

DISTAL RADIUS FRACTURE

Radiographs

- Radial Height
 - Measured from Posterior-Anterior (PA) projection
 - 2 lines perpendicular to long axis Radius
 - Parallel to Radial Styloid
 - Parallel to Ulnar articular surface
 - Normal 12 mm approximate (ulnar negative)
 - Excessive Radial shortening ? Assoc. tear of TFCC

Porrino JA, Maloney E, Scherer K, et al <u>Fracture of the Distal Radius: Epidemiology and</u> <u>Premanagement Radiographic Characterization</u>, American Journal of Roentgenology 2014 203:3, 551-559

DISTAL RADIUS FRACTURE

Radiographs

- Radial Inclination
 - Defined as : angle between a line *perpendicular to the Radial central axis and a line drawn along the Radial articular surface*
 - Articular surface Radius 23º normal Radial inclination
 - Normal range: 13-30^o
 - Loss of Radial Inclination reflects fracture v. malunion

Porrino JA, Maloney E, Scherer K, et al <u>Fracture of the Distal Radius: Epidemiology and Premanagement</u> <u>Radiographic Characterization</u>, American Journal of Roentgenology 2014 203:3, 551-559

DISTAL RADIUS FRACTURE

Radiographs

- Volar/Palmar Tilt
 - Defined as *—angle between a line perpendicular to the central Radial axis and a line connecting the dorsal and volar margins of the articular surface of the distal [as seen on lateral projection]*
 - Loss of volar tilt is seen with acute distal Radius fx or malunion
 - Normal 10 º

Volar/Palmar Tilt

Porrino JA, Maloney E, Scherer K, et al <u>Fracture of the Distal Radius: Epidemiology and Premanagement Radiographic Characterization</u>, American Journal of Roentgenology 2014 203:3, 551-559

FRACTURE DESCRIPTION

OS CO

Fx location

- Open v. Closed:
 - Gustilio-Anderson classification
- Neurovascular status
- Angulation: direction fx apex
- Displacement vs. Non-displaced
- Comminution
- Impaction
- Rotation
- Articular extension

COLLES' FRACTURES

Defined as: distal radius fx, dorsal comminution-angulation-displacement, radial shortening & Ulnar styloid fx

- Metaphyseal fx 1.5cm proximal to Carpal articulation
- Typically non-articular w/ dorsal displacement
 - More severe fx considered with intra-articular comminuted appearance (dorsal)
- Dorsal displacement/angulation principle distal fx fragment
- Young- time of puberty 2nd to lower bone mineralization
 - Higher energy sports
 - Elderly- Women > men
 - Falls
 - Osteoporosis

Summers K, Fowles SM. Colles' Fracture. 2020 Aug 10. In: StatPearls Treasure Island (FL): StatPearls Publishing; 2020 Jan

COLLES' FRACTURES

RADIOGRAPHS

- Common X-ray views: Posterior-Anterior (PA), Lateral and Oblique
 - PA View Radial shortening, Scapholuna widening, Ulnar variance, Ulnar styloid fa
 - 2nd view Carpal Arches (Gilula's arches)
 - Lateral X-ray wrist
 - Loss volar/palmar tilt
 - Dorsal cortex comminution
 - Superimposed Ulna on Radius (DRUJ)
 - Hand follows distal radius fx fragment
 - Oblique-
 - Dorsal cortex comminution
 - Intra-articular comminution

Porrino JA, Maloney E, Scherer K, et al <u>Fracture of the Distal Radius: Epidemiology</u> and Premanagement Radiographic <u>Characterization</u>, American Journal of Roentgenology 2014 203:3, 551-559

HEMATOMA BLOCK

Inject Hematoma from dorsal aspect of wrist

- 5ml 1% Lidocaine & 5ml 0.5% Bupivacaine
- 10ml 1% Lidocaine
- Sterile prep & technique
- Occ. need few ml's around ulnar styloid too
- No monitoring required
- Risks:
 - Infection & LA toxicity
- Do not use once > 24hrs old as hematoma organized

https://www.youtube.com/watch?v=-_whFCBHn-M

DISTAL RADIUS FX REDUCTION

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

COLLES' FRACTURE

Treatment

- Non-op
 - Majority of Colles- type distal radius fx do not need surgical intervention
 - Displaced, extra-articular, non-comminuted fx are the best with Closed reduction.
 - Reduction maneuver
 - Traction of the hand
 - Counter-traction @ the elbow
 - Re-produce deforming force "unlock" the fracture
 - Volar-medial force applied to distal Radius fragment
 - Pronated position overcomes deforming supination force
 - Immobilize in sugar-tong splint
 - Post-reduction x-ray
 - Post-reduction exam: neurovascular intact
 - Follow up in 1 week for re-imaging

Meaike JJ, Kakar S, Management of Comminuted Distal Radius Fractures: A Critical Review, JBJS Reviews 2020;8(8)e20.00010

Radial Styloid Process Fracture

DISTAL RADIUS FRACTURES

- "Chauffer's fx", Hutchinson fx
- Intra-articular fx of Radial Styloid
- FOOSH Injury mechanism with blow to dorsal wrist
 - Causing wrist dorsiflexion-ABDuction & scaphoid compression into Radial styloid
- Radioscaphocapitate ligament avulses the Radial styloid
- Distraction forces from Brachioradalis & Wrist/finger extrinsic Flex/Ext

X-Ray Images

- Anterior-Posterior(AP) v. PA and Lateral views [Oblique optional]
- AP view w/ wrist Ulnar deviated best to see Scapholunate (SL) gap
- Clenched fist view: Longitudinal compression load widens SL gap

Corsino CB, Reeves RA, Sieg RN. Distal Radius Fractures. [Updated 2020 Aug 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-.

Wheeless CA, Chauffer's Fracture: Radail Styloid Fractures, Wheeless Online, <u>https://www.wheelessonline.com/joints/chauffeurs-fracture-radial-styloid-fractures/</u>, retrieved Jan 28, 2021

DISTAL RADIUS FRACTURES

Smith's Fracture

Epidemiology

- Extra-articular distal Radius w/ volar displacement
 - Intra-articular Smith's III = Volar Barton
 - Hand /wrist follows Radius fragment
 - 5% all distal Radius fractures
 - Garden Spade deformity
- Fall backward on of palmar flexed wrist or direct blow dorsal wrist
 - Volar displacement also seen fall on palmar hand
- Highest incident young males/older females
 - High energy falls young
 - Osteoporotic bone elderly

Schroeder JD, Varacallo M. Smith's Fracture Review. [Updated 2020 Aug 15]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-.

Picture courtesy T Gocke, PA-C

Smith's Fracture

DISTAL RADIUS FRACTURES

• Xray:

- AP, Lateral & Oblique usual images
- Traction view optional
- Pathology to identify
 - Extra/Intra-articular, dislocation car
 - Radial deviation
 - Ulnar variance
 - DRUJ alignment
- CT Scan
 - Comminuted intra-articular fractures
 - Clarifies fractures fragments & quantifies articular surface injury

Schroeder JD, Varacallo M. Smith's Fracture Review. [Updated 2020 Aug 15]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-.

Dorsal Barton's Fracture

DISTAL RADIUS FRACTURES

- Defined as distal Radius fx that extends thru the dorsal articular surface w/ assoc. dislocation of the Radiocarpal jt
 - No disruption of the Radiocarpal ligament
 - Articular surface fx distal Radius remain connected to proximal carpal row
- Injury pattern dependent on age
 - Elderly women, osteoporosis, falls from standing height
- Pathophysiology
 - Compression injury w/ marginal shearing fx of distal Radius
 - Fall on outstretched pronated wrist
 - Triangular fragment Radius displaced dorsally w/ carpus
 - Stabilizer's wrist: Radiocarpal ligaments, jt capsule Scaphoid & Lunate fossa

Szymanski JA, Reeves RA, Carter KR. Barton's Fracture. [Updated 2020 Jul 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan

Wheeless CA, Dorsal Barton's Fracture, Wheeless Textbook of Orthopaedics <u>https://www.wheelessonline.com/trauma-fractures/dorsal-bartons-fracture-dorsal-shearing-frx/</u>, accessed February 2, 2021

Volar [Reverse] Barton's Fracture

DISTAL RADIUS FRACTURES

- Volar displaced fx of distal Radius w/ Volar subluxation/dislocation Radiocarpal jt.
- Xray:
 - Fx extends thru intra-articular Radius [dorsal or volar
 - Fx Fragment wedged shaped
 - Carpus displaces proximal volar 2nd to deforming forces
 - Most fx require CT scan
- Treatment
 - Most require ORIF 2nd to displacement (volar plate, buttress plate, CRPP)
 - Closed reduction fails due to palmar displacement
 - Non-displace fx most conducive to cast immobilization

Szymanski JA, Reeves RA, Carter KR. Barton's Fracture. [Updated 2020 Jul 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan

Wheeless CA, Volar Barton's Fracture, Wheeless Textbook of Orthopaedics <u>https://www.wheelessonline.com/trauma-fractures/volar-bartons-fractures/</u>, accessed February 2, 2021

DISTAL RADIUS FRACTURES

Die-Punch Fracture

- Defined as
 - Intra-articular distal Radius fx w/ depression into Lunate fossa
- Injury Mechanism
 - Axial load distal Radius
- Radiology
 - Traditional X-ray views
 - CT scan for comminuted fx with > 2mm displacement
- Treatment
 - Surgical intervention, no non-op options
 - Elevation of articular surface w/ stabilization distal radius fx.

Ahn L, Vitale M, Franko O, Distal Radius Fractures, Orthobullets, <u>https://www.orthobullets.com/trauma/1027/distal-radius-fractures</u>, updated 1/9/2021, retrieved 2/16/2021

CARPAL FX

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

CARPAL BONE INJURIES

Scaphoid Fx – navicular

- Epidemiology
 - Most frequently fractured carpal bone
 - Approximately 15% of all acute wrist injuries
 - Transverse fx pattern considered more stable & best healing prognosis
 - Mechanism of Injury:
 - Fall on outstretched hand (FOOSH)
 - Axial load to wrist/carpal bones
 - Some radial deviation & Hyperpronation

SCAPHOID FRACTURE

- 3 parts: proximal & distal poles, waist
- Most fx occur @ waist 70% all Scaphoid fx.
- Proximal pole poor healing prognosis 2nd blood supply (highest rate AVN) [20%]
- Distal pole most common fx location in kids (ossification center) [10%]

Physical Exam

- Anatomic snuffbox tenderness
 - Volar wrist pain navicular tuberosity
 - Axial loading of the thumb most sensitive & most specific [Gillion 2021]

CARPAL BONE INJURIES

Scaphoid Fx- Radiographs [Gillion 2021]

- Wrist x-rays: PA/PA grip, Lateral & Oblique,
 - Suspect scaphoid fx, snuffbox pain, FOOSH
 - scaphoid view: 30-degree wrist extension, 20-degree ulnar deviation
 - negative x-ray & high suspicion for fx: repeat x-ray 14-21 days
 - Osteolysis 2nd to bone healing should be present in 1-3 weeks
 - Immobilize in Thumb Spica splint/cast until follow up x-ray

Scaphoid Fx

CARPAL BONE FRACTURES

Treatment:

Important Initial treatment:

- Suspect occult scaphoid fx
- Initial recognition of potential injury mechanism
- Thorough physical examination
- Comprehensive review of initial radiographs
 - Thumb spica splint vs. cast
 - Initial immobilization for 14-21 days
 - Repeat x-ray on follow up exam

Photos courtesy TGocke, PA-C

HAND-METACARPAL FX

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

D			
-51	JINY		NY
			/

- Phalanges: 14
- Sesmoid: 2
- Metacarpals: 5
- Carpals
 - Proximal row: 4

Lister's tubercle

- Distal row: 4
- Radius and Ulna

anterior-posterior: adult hand

> fingers (phalanges)

metacarpals

ulna

Photo courtesy TGocke, PA-C

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

sesmoid

carpals

radius

Anatomy Review

- Index & Long (middle) fingers least mobile
- Ring & Small fingers more mobile & articulate with Hamate
- Thumb most mobile 2nd to articulation with carpus
- Palmar & Dorsal Interossi muscles originate for MC shafts
- Intrinsic Muscles
- Extrinsic Muscles

DORSAL CMC

Epidemiology

- Most fractures of the hand are to the metacarpal (MC)
 - Metacarpal neck most common injured & 5th metacarpal most often injured
 - 30% of all hand Fx are to the Shaft
- Men highest incidence of metacarpal injuries
- Average age injury 10-30 yrs
- Fx located by location: Head- Neck Shaft Base
- Treatment metacarpal fx based on finger and fx location
- Consider other injuries
 - Lacerations open fx compartment injuries- Infection

Borchers JR, Best TM, Common Finger Fractures and Dislocations, *Am Fam Physician 2012*, 85;(8):805-810 Wieschhoff GG, Sheehan SE, Wortman JR, et al, Traumatic Finger Injuries: What the Orthopaedic Surgeon Wants to Know, RNSA 2016;36(4):1106-1128

Metacarpal Neck FX

- Index & Long Fingers
 - 15 degrees angulation
- Ring Finger
 - 30-40 degrees angulation
- Small Finger
 - 50-60 degrees angulation
 - Some cases 70 degrees angulation shown not to have significant impairment hand function

Wieschhoff GG, Sheehan SE, Wortman JR, et al, Traumatic Finger Injuries: What the Orthopaedic Surgeon Wants to Know, RNSA 2016;36(4):1106-1128

Nelson, Wongworawat: Tolerances, 3rd edition 2009

X-rays courtesy Tom Gocke PA-C Library

HUMAN BITE INJURY

<u>Clenched fist striking mouth/tooth – "Fight bite"</u>

- Tooth penetrates skin/joint/tendonsheath/periosteum
- More common in adult males & boys
 - Dorsal aspect hand
 - 3rd/4th MCP joint common location
 - Tendon laceration
 - Joint Capsule violated
 - Delayed presentation grossly infected
 - Surgical emergency w/ or w/o assoc. fracture
 - IV ABX
 - Tetanus
 - Hepatitis/HIV ?

Kennedy SA, Human and Other Mammalian Bite Injuries of the Hand: Evaluation and Management; JAAOS January 2015

Metacarpal Shaft FX

- Minimal displacement
- NO malrotation
- <5mm shortening
- 10 degrees coronal angulation any MC
- Index & Long Fingers
 - 0 degrees sagittal angulation
- Ring & Small Fingers
 - 20 & 30 degrees sagittal angulation respectively

Nelson, Wongworawat: Tolerances, 3rd edition 2009

Wieschhoff GG, Sheehan SE, Wortman JR, et al, Traumatic Finger Injuries: What the Orthopaedic Surgeon Wants to Know, RNSA 2016;36(4):1106-1128

METACARPAL SHAFT FRACTURE

Metacarpal Shaft fx – Non-operative Treatment

- Nondisplaced metacarpal Shaft fractures
 - Transverse
 - Oblique ??
- Displaced fx with closed reduction and acceptable alignment
- Stable fx pattern pre & post reduction
- Minimal shortening metacarpal (cosmetic)
- NO malrotation

Wieschhoff GG, Sheehan SE, Wortman JR, et al, Traumatic Finger Injuries: What the Orthopaedic Surgeon Wants to Know, RNSA 2016;36(4):1106-1128

Oetgen ME, Dodds SD. Non-operative treatment of common finger injuries. *Curr Rev Musculoskelet Med*. 2008;1(2):97–102. doi:10.1007/s12178-007-9014-

Oak N, Lawton JN, Intra-Articular Fractures of the Hand, Hand Clinic, 2013;29:535-549

METACARPAL SHAFT FRACTURE

Pictures courtesy T Gocke, PA-C

CASCADE SIGN

Normal

Abnormal

Photo courtesy TGocke, PA-C

Photo courtesy TGocke, PA-C

METACARPAL BASE FRACTURES

<u>Metacarpal Base fx –</u>

- Extra-articular: Tx like MC Shaft
- Intra-articular: Tx based on malalignment
 - Malalignment Leads premature OA, weak grip & poor ROM
 - More Ulnar MC's allow for more ROM @ CMC jts. Leading to more noticeable malalignment
- Exam
 - Assess for Rotational deformities & weakness
 - Review X-ray studies
 - If Intra-articular or appear comminuted with ? Intraarticular extension need CT scan

Oak N, Lawton JN, Intra-Articular Fractures of the Hand, Hand Clinic, 2013;29:535-549

X-ray Image courtesy Tom Gocke, PA-C Library

METACARPAL BASE FRACTURE

- Initial Treatment
 - Recognize injury seen on x-ray
 - Assessment for malrotation deformities & grip strength changes (hand dynamometer)
 - Application Ulnar/Radial gutter splint intrinsic plus position
 - Volar /dorsal blocking splint
 - Consider CT Scan hand
 - Ortho Hand/Plastics Hand follow up within <1 week of CT scan being done
 - Surgery vs. Thermoplastic splint/Cast immobilization
 - Needs close follow up if treated conservatively

Bernstein D, Metacarpal Base Fractures – Surgical vs. Conservative care, November 1, 2019 – Personal conversation Oak N, Lawton JN, Intra-Articular Fractures of the Hand, Hand Clinic, 2013;29:535-549

METACARPAL BASE FRACTURE

FINGER FX & DISLOCATIONS

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED
PHALANGEAL FRACTURES

Epidemiology

- Most common fracture to the hand 50%
- Finger phalanx divided into:
 - Proximal (P1) Middle (P2) Distal (P3)
- Common Injury Mechanism: Axial load & Crush injury
- Injury involves Tuft-Shaft-Base
- Fx pattern: Transverse or Longitudinal
- Distal Fingertip anatomy
 - Numerous septa extend from periosteum to skin
 - Overlying nail bed
 - 50% nail Bed extends beyond P3
 - Less likely to dislocate DIP jt. due to fingertip anatomy

Wieschhoff GG, Sheehan SE, Wortman JR, Traumatic Finger Injuries: What the Orthopaedic Surgeon Wants to Know, RNSA 2016;36(4):1106-1128

PHALANGEAL FRACTURES

Treatment: Distal phalanx

- Non-operative
 - Extra-articular
 - < 10 degrees angulation
 - <2mm shortening
 - No Rotational deformity
 - Dorsal Finger splint DIP joint vs. Stack Splint
 - Swelling may limit stack splint use initially
 - Monitor for Nail matrix & nail bed laceration

Nelson S, Wongworawat M, <u>Tolerances: an orthopaedic reference manual</u>, 3rd edition, Loma Linda University Press, Loma Linda, CA. 2009 Wieschhoff GG, Sheehan SE, Wortman JR, Traumatic Finger Injuries: What the Orthopaedic Surgeon Wants to Know, RNSA 2016;36(4):1106-1128

PHALANX FX

Shaft Fractures

- Transverse w/o displacement considered to be stable fx can immobilize w/a splint
- Oblique & Spiral: often unstable fx patterns and require surgery
- Intra-articular fx: most displaced & require ORIF (same as P2 injury)

Base fractures

- Often need surgery 2nd to poor ability to maintain fx reduction if displaced
- Immobilize in extension

Pain meds

F/U 1 week

PHALANGEAL JOINT INJURIES

Epidemiology

- Occurs men > women, 20's-40's
- Finger dislocations: Common finger injury
- Collateral Ligaments and volar plate ligaments injured
- Forced Hyperextension w/ Axial load

Wieschhoff GG, Sheehan SE, Wortman JR, Traumatic Finger Injuries: What the Orthopaedic Surgeon Wants to Know, RNSA 2016;36(4):1106-1128

FINGER DISLOCATION

Dorsally displaced PIP joint dislocation

- Best to have pre & post reduction xrays
- PA View:
 - Double shadow P2 over P1
 - Appears normal alignment
- Lateral View:
 - P2 dorsally displaced @ PIP joint
 - Finger shortened 2nd to pull lumbricals and flexor/extensor tendons
 - Gross dorsal deformity on clinical exam

Oaks N, Lawton JN, Intra-articular Fractures of the Hand, Hand Clinic 2013;29:535-549

Helms CA, Fundamentals of Musculoskeletal Radiology, Fifth Edition, Elsevier, Phila., PA, 2020

Pictures courtesy T Gocke, PA-C

FINGER DISLOCATIONS

Treatment Dorsal Finger PIP joint dislocation

- Usually, closed Reduction with Longitudinal traction and recreate injury mechanism
- Unreducible fx 2nd to:
 - Interposed Volar plate ligament
 - Time from dislocation to reductionjoint stiffness & soft-tissue contraction
- Fx-dislocation w/ > 40% articular surface involved needs surgery to stabilize fragment.

Ahn L, Blomberg B Dislocated Phalanx OrthoBullets 2019

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

LOWER EXTREMITY FRACTURES

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

HIP ANAT5OMY

CLASSIFICATION of FEMUR FRACTURE

FEMUR FX

Overall Medical status

Comprehensive Exam

Imaging

- Pelvis
- Hip
- Femur
- Spine?

Osteoporosis Work-up

SUBCAPITAL FEMORAL NECK FX

Epidemiology

- Increasingly common with aging population
- Female-white-elderly-osteoporosis
- High energy-young; low energy –elderly
- Neck intracapsular
 - Low blood supply
 - Poor healing potential
- Mortality
 - 25-30% overall
 - Chronic renal failure 45% 2 yrs
 - Decrease mortality if Surgery < 24 hrs
- Treatment
 - Admit & Medical optimization
 - Surgery <24 hrs
 - Mobilize

GARDEN CLASSIFICATION

	Garden	Garden	Garden	Garden	
Garden Classificati on:	Garden I: incomplet e fracture, valgus impacted	Garden II: non- displaced fracture	Garden III: fracture with partial displacem ent	Garden IV: fracture with complete displacem ent	

BASICERVICAL FEMORAL NECK FX

- 1.8% of proximal Femur fx
- Base of the femoral neck & Trochanteric region
 - Same considerations at Subcapital Femoral Neck Fx
 - Operative treatment

INTERTROCHANTERIC FEMUR FX

Epidemiology

- Occurs mostly in geriatric populations
- Very similar characteristics as hip fracture
- Occurs same frequency as femoral neck fractures
- Female: Male 2:1
- Mortality & Morbidity rates similar to femoral neck fractures
- Inherently unstable fractures especially if involves posteromedial cortex
- Extracapsular:
 - Between greater and lesser trochanter
 - Area between femoral neck and trochanter

INTERTROCHANTERIC FEMUR FX

а

SUB-TROCHANTERIC FX

Isolated Lesser Trochanteric Fx Traumatic Sub Trochanteric fx

- Think pathologic fx
- Unusual occurrence
- Needs CT scan

- Lesser Troch to 5cm distal
- Trauma/Bisphosphonates
- Deforming forces
 - Illiopsoas.
 - ADDuctors
 - Ext. Rotators
- X-ray
 - Traction view/pelvis
 - Femur
- Treatment- Surgery

FEMUR SHAFT FX

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

FEMUR SHAFT FRACTURES

General

Occurs more in young adults

• High energy

- MVA/motorcycle
- Pedestrian vs. auto
- Fall
- Gunshot wound (GSW)
- Stress Fracture
 - Runners or repetitive stress
 - Risk with increasing physical activity
 - Long-term Bisphosphonates use
- Transverse pattern:
 - Most common femur shaft fracture
- Fracture may involve total hip arthroplasty (THA) components

FEMUR SHAFT FRACTURES

- Fracture pattern
 - Transverse
 - Oblique
 - Butterfly
 - Segmental
 - Comminuted
- Location
 - Proximal
 - Middle
 - Distal
 - Supracondylar

Femur Shaft Fractures

- Treatment:
 - Emergent Treatment:
 - Identify life-threatening injuries
 - Good assessment of neuro and vascular status
 - Check for associated fractures/injuries
 - Check for compartment syndrome thigh
 - Immobilize fracture until surgery
 - Immediate OR: long posterior splint (temporary measure) or traction splint
 - Prolonged OR: skeletal traction

PERIPROSTHESTIC FEMUR FRACTURES

SUPRACONDYLAR FEMUR FRACTURES

SUB-TROCHANTERIC FX

R

TRAUMA

Bisphosphonate related-Fx

- Treat osteoporosis
- Duration >5 yrs increases risk
- Asian > White
- Shorter, Heavier
- Taking DM meds >1 yr

PATELLA FX

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

PATELLA FX

- Direct blow- primary mechanism of injury
 - High energy: dashboard/MVA is most frequent cause (78.3%)¹
- Indirect blow-
 - Forceful knee hyperflexion & eccentric quadriceps contraction
 - Example: Jump/fall with patient landing on their feet combined with an eccentric contraction of the quads³
 - 35% indirect blow fractures do not disrupt extensor mechanism
- Periprosthetic patella fractures after TKA⁴
 - 0.68% in non-resurfaced patella
 - 21% in resurfaced patella

PATELLA FX

- Visible/ palpable defect between bone fragments
- Hematoma/ hemarthrosis that communicates with joint
- Complete inability to actively extend the knee (likely also correlates with tearing of the medial/ lateral retinaculum)
 - If retinaculum is intact, patient may be able to extend knee with a patella fracture

PATELLA FRACTURES

- Sleeve fracture
 - Seen only in pediatric age pts.
 - Osteochondral injury where articular cartilage of patella and tendon separate from patellar body
 - Ossification patella begins between age 3-5 yrs
 - Distal pole patella most common location (superior)
 - Commonly seen kids ages 8-15yrs
 - Peak age 12-13 yrs age
 - Boys 3:1 ratio vs. girls

Image courtesy of pediatricimaging.wikispaces.com

PATELLA FRACTURES

Bipartite patella

- Asymptomatic congenital anomaly
- 8% population
- 50% bilateral
- Failure of ossification center to close
- Often confused with patella fracture
- Most common in the Superolateral patella
- No treatment required asymptomatic knee

TIBIA FX

© 2022 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

TIBIAL PLATEAU FRACTURES

- Compartment syndrome major concern
- Common Fracture patterns
 - Younger age splitting high energy
 - Older age depression (impaction) osteoporosis
- Women > Men 2nd to osteoporosis
- Injuries to cruciate and collateral ligaments of the knee
- Skin problems common 2nd to thin coverage at proximal tibia
- Neurovascular injuries
- Surgical Treatment
 - Delayed Ex-Fix
 - Definitive- ORIF

TIBIAL PLATEAU FX

Schatzker Classification of tibial plateau fracture

LEFT

LE

•
TIBIAL PLATEAU FX

Treatment

- High energy Tibial Plateau fx Need Ex-Fix
 - Restore length and protects tissue
- Admit & Compartment checks
- Think about knee dislocation
- Vascular Assessment
 - Ankle Brachial Index (ABI)
 <u>Systolic BP LE</u>
 - Systolic BP UE
 - < 0.9 need CTA
- Delay Definitive fixation 5-10 days
 - Skin

TIBIA SHAFT FRACTURES

TIBIAL SHAFT FX

- Open fractures of the tibia are more common
- M>F
- 25% all Tibia shaft fractures associated with knee ligament injuries*
- Fracture of the ipsilateral fibula common
- Peroneal nerve injuries commonly assoc.
 W/ Tibial shaft fx
- High energy young
 - Direct blow
 - Wedge/comminuted same level Fibula fx
 - Severe soft tissue injuries

Low Energy- elderly

- Torsional
- Spiral fx Tibia w/different level Fibular fx
- Post. Malleolar fx ankle assoc. w/ spiral Tibia fx
- Assoc. Injuries
 - Compartment Syndrome
 - Ipsilateral FX
 - Plafond
 - Plateau
 - Femur
 - Posterior Malleolus fx (distal 1/3 shaft/spiral)

Priorities:

- ABC'S- "Man Scan"
- Stabilize patient.
- Associated Injuries
 - Polytrauma
 - Ipsilateral long bone fractures
 - Neurovascular injuries
- Tetanus
- Antibiotics
 - Cephalosporins-Staph/Strep
 - Aminoglycosides- gram negatives
 - PCN-Clostridium (Farm injuries)
- Wound Care- saline gauze
- Immobilization- splint till OR

Tibia Shaft Fracture

Immobilization

- "Water Ski" position
 - Low Leg & Sugar-tong
 - Mid-shaft/Distal
 - Long leg
 - Proximal
- Compartment checks
- Soft-tissue injury
- Neurovascular checks
- Admit/Observation
- Open Fx/High Energy
 - OR for Irrigation
 - Ex Fix
 - Protect skin

TIBIA SHAFT FX

TIBIAL PLAFOND FRACTURES

TIBIAL PLAFOND FX

- Plafond: anatomic location on the distal tibia
- Pilon (Pylon): describes force of injury
 - Most times used interchangeably
 - Described as any distal tibia fx extending into articular surface vs. comminuted fx of the tibial plafond
- Male > Female
- Increased incidence of pilon fx 2nd to higher survival rates from MVA
- ¼ all pilon fx open
- Increased soft-tissue trauma assoc. with pilon fractures
- Fracture blisters commonly associated with pilon fx
- Fibula fx commonly seen with pilon fx

TIBIAL PLAFOND FX

- 25% open fx
 - Gustillio- soft-tissue injury
 - "Man Scan"
- Assoc. Injuries
 - Compartment syndrome
 - L spine compression fx
 - Calcaneous- Plateau-Hip-Pelvis
- Open fx protocol
 - Admit
 - Tetanus
 - ABX coverage
 - Wound care
 - Immobilize
 - Splint
 - Ex-Fix

ANKLE FX

ANKLE ANATOMY

RADIOGRAPHS

- Ankle (medial) clear space
 - Normal range <4 mm between tibia
- Tibiofibular clear space
 - Normal range <5 mm between tibia & fibula

RADIOGRAPHS

- Tibiofibular overlap
 - Normal range >8-10 mm between tibia & fibula
 - Fibular notch

RADIOGRAPHS

- Talocrual Angle
 - Normal measurement 8-15 degrees
 - Strong indicator of syndesmosis disruption, because the fibula will be shortened and externally rotated
 - Talocrual Angle should be compared to the contralateral normal side

Intermalleolar line

crual Angle

lal

ANKLE FX

- Unimalleolar Fx 68%
 - Isolated Fibular fx
 - Normal Mortise
- Bimalleolar Fx 25%
 - Medial & Lateral Malleolus
 - Bimalleolar equivalent Fibula Fx & Medial Ligament injury
 - Wide Mortise ?
- Trimalleolar Fx
 - Medial-Lateral-Posterior
 - Wide Mortise
- Ankle Fx/Dislocation
 - Disruption Ankle Mortise
 - Talus displaces from Plafond
 - Look @ Syndesmosis

MAISONNEUVE'S FRACTURE

- Maisonneuve's fracture involves fracture of the proximal fibula
 - Associated medial Malleolus fracture
 - Deltoid ligament injury and/or
 - Injury to the syndesmosis
- Medial malleolus fracture & force transmitted through interosseous membrane and exits at proximal fibula
- Do not assume medial malleolus fractures is isolated
- Palpate proximal Fibula

Tibia nterosseou brane Avulsed fragment **Calofibular** Deltoid ligament ligament Talus

ANKLE FRACTURE-DISLOCATION

- Associated with Bimalleolar or Trimalleolar ankle fractures
- Talus and foot translated completely out of mortise
- Obvious deformity to ankle and foot
- Open vs. Closed
- Play close attention to pre & post reduction neuro and vascular exams

ANKLE FX/DISLOCATION

REDUCTION AS SOON AS POSSIBLE PROTECTS SKIN

ANKLE FX/DISLOCATION

- Knee flexion relaxes effects of Gastroc
 - Water ski traction
 - Reduction
 - Dangle ankle over the edge of the table
- Hold reduction while splint applied and Dries
 - Hold Big Toe and Internal rotation
 - Posterior & Sugar-tong/stirrup splint
- Check Neurovascular frequently
- Post reduction x-ray

https://www.youtube.com/watch?v=p8BgYKli0Dl

ANKLE FX/DISLOCATION REDUCTION

FOOT ANATOMY

Images courtesy Michael J. Fuller-WikiRadology

CALCANEOUS FX

- Common tarsal bone fracture
- 65-75% fx intra-articular
- 17% open fx
- High energy mechanism
 - tends to have poor outcomes
- Men > Women
- Associated injuries
 - Lumbar Spine fractures
 - Femur/Pelvis fractures
 - Contralateral Calcaneous fx
- Watch for Tarsal Tunnel syndrome
- Watch for foot compartment syndrome
- Mondor sign- plantar bruising

CALCANEOUS FRACTURES

BÖHLER'S ANGLE & ANGLE OF GISSANE

Bohler's Angle 20-40 degrees Decreased angle represents posterior facet fracture

Angle of Gissane 130-45degrees Increased angle represents posterior facet fracture

CALCANEAL FRACTURE

CALCANEOUS FRACTURE

- Initial Treatment:
 - Assess for associated Injuries
 - RICE
 - Bulky padded dressing and splint
 - helps decrease swelling
 - Reduces soft tissue injury
 - Fx Blisters common occurrence ("bacterial cesspools")
 - NWB
 - Compliance Issues
 - Poor: Bulky padded splint, admit– RICE Skin checks Surgery at appropriate time
 - Reliable: Bulky padded splint, D/C- RICE- skin check office one week – Surgery at appropriate time
 - Encourage smoking sensation, blood sugar control, good nutrition

TALUS FX

TALAR FRACTURES

- 3 Anatomic parts of the Talus
 - Head
 - Neck
 - Body
 - Posterior process Os Trigonum
- Body articulates with tibia/fibula

to form ankle mortise

 Head of the Talus articulates with the tarsal navicular

Talar neck fx

- Account for 50% all Talus fractures
- Injury Mechanism: high velocity
- > Fx displacement = > risk osteonecrosis
 Talar Body fx
- 25% all talus fractures
- Associated with poor outcome
- Associated w/ high energy injury mechanism
 - Osteochondral injuries big concern
- Concerns for osteonecrosis
- Anatomic components of the Talar Dome:
 - 60% talus covered with hyaline articular cartilage
- Ipsilateral lower extremity fractures common
- Consider other Trauma
 - Lumbar spine
 - Tibial Plateau
 - Femur/Hip

TALAR NECK/BODY FX

TALAR NECK/BODY FRACTURES

Initial Emergent Management:

- Recognition of possible injury
- Appropriate exam & Radiographs/CT
 - Look for other Injuries
- Recognize and monitor for foot compartment syndrome
- Evaluation for ALL trauma related mechanisms of injury
- Reduction of Fx/Dislocation reduces skin trauma
- Lots of padding/splint
 - "Charlson splint"
- Follow up in 7-10 days- Skin check
LISFRANC INJURY

LISFRANC FRACTURE

- <u>Defined</u>: disruption in articulation 2nd (medial) cuneiform & base second metatarsal leading to disruption TMT joint complex
- Age- 30"s
- Males>females
- MVAs, falls from height, and athletic injuries
- Injury mechanism :
 - caused by rotational forces & axial load, forefoot Hyperplantar flexed

RADIOGRAPHS

Foot: AP, LATERAL & OBLIQUE

- WT-BEARING -best to assess:
 - Hallux valgus angle (HVA
 - Intermetatarsal angle (IMA)
 - CHARCOT foot
 - Lis-franc pain/swelling allows
- Key x-ray signs indicating Lisfranc injury
 - Malaligned 1-2-3 MT -cuneiforms
 - Malaligned 4TH & 5TH MT-CUBOID
 - Widening space Great and 2nd metatarsal
 - Dorsal subluxation MT base (lateral)
 - Disruption Medial column

LISFRANC FRACTURES

Physical Examination:

History

- Severe pain
- Unable to wt bear
- "told they had a sprained foot"
- "negative x-rays"

• <u>Exam</u>

- plantar bruising --Mondor sign
- swelling throughout midfoot
- tenderness over tarsometatarsal joint
- Loss of motion & stability
- Treatment
 - Similar to Calcaneous/Talus Fx
 - Most require surgical intervention

Picture courtesy T Gocke, PA-C

METATARSAL FX

- Metatarsal fractures common injuries of the foot
- 5th metatarsal most commonly fractured
- 2nd and 5th decade of life
- 3rd metatarsal fractures rarely occur in isolation
 - fracture of 2nd or 4th metatarsal
- Most trauma related to crush injury or direct blow
- Most are non or minimally displaced/angulated
- Intact Great toe & 5th Metatarsal leads to stability of fx central 3 Metatarsals
- When fx displace-plantar direction
 <u>2nd to pull by toe flexors & intrinsic muscles</u>

Radiographs

- Most oblique or transverse fx pattern
- More displacement at neck 2nd to flexor & intrinsic muscle
- > displacement & angulation if 1st MT fx
- <20 degrees varus/valgus angulation acceptable
- > 4mm plantar/dorsal displacement reduce
- > 10 degrees dorsal angulation reduce

- Treatment
 - Monitor foot compartment syndrome
 - Well padded Jones dressing & splint/fx boot/ post op shoe
 - Neuro/vascular checks
 - NWB WBAT depending on fx and swelling
 - FX beyond acceptable limits
 - Finger/toe traps for closed reduction and splint
 - Repeat x-ray good alignment then can D/C
 - Make NWB till follow up exam

- Unable to improve alignment
 - Manipulate under anesthesia/ankle block
 - Closed reduction and reassess
 - CRPP and reassess
 - Padded dressing and splint/fx boot
- Healing time all FX
 - 4-6 weeks
 - Associated factors can slow or impede healing

5TH METATARSAL FRACTURES

- 3 Zones base 5th MT
- Zone I- articular surface for the metatarsocuboid joint
- Zone II articulation of the 4th and 5th metatarsals (Jones Fracture)
- Zone III extends 1.5 cm distal to zone II

Dameron, TB: Fractures of the Proximal Fifth Metatarsal: Selecting the best Treatment option; JAAOS 3(2), March/April 1995.

tetaphyseal vessels

Intramedullary nutrient artery

5TH METATARSAL FRACTURE

Zone I

- Most proximal and is considered the base of the 5th MT
- Peroneus Brevis and lateral cord of plantar aponeurosis
- Fx starts lateral cortex and extends medially into the metatarsocuboid joint
- Good healing associated w/ Zone I injuries
- X-ray > 3mm dorsal displacement may need surgical fixation
 - Symptoms subside long before healing seen on x-ray
 - Asymptomatic non-union not uncommon

5TH METATARSAL FRACTURE

• Zone II

- More distal part tuberosity
- Strong ligament attachment dorsal / planta for 4th-5th MT
- Fx this area extend into articulation of 4-5 MT
- More painful than zone I injury
- Symptoms dependant on activity level
- No improvement on healing WBAT vs. non-Wt-bear – Controversial
- Higher incidence asymptomatic non-union

5TH METATARSAL FRACTURE

- Zone III
 - Most often assoc w/ stress fx mechanism
 - Fx distal to ligament attachment binding 4/5 MT together
 - Slow healing
 - Responds better to ORIF
 - Intramedullary 4.5 cancellous lag screw
 - Non-union may need grafting
 - SLWC 4-6 wks

TOE FX

TOE FRACTURES

- Toe Fx Account for < 7% all fx seen in Primary care setting
- Lesser Toe fx 4x m ore likely vs Great toe fx
- Most Lesser Toe fx are non-displaced
- Great toes Fx
 - involves >25% articular surface need close F/U & ? Surgery
 - Comminuted
 - Displaced
- Injury Mechanism:
 - Axial load Jammed toe
 - Crush injury
 - Jt. Hyperextension

TOE FRACTURE

Radiology

- 3 views: AP, Lateral, Oblique
- Clear views of injured toes
 - Spiral & Transverse fx angular deformity
 - Oblique fx shortening
 - Avulsion fx
- Post –reduction images as needed
- Treatment
 - Open fx go to the OR/ABX/Tetanus
 - Reduce angulated/deformed toes
 - Digital/hematoma block as needed
 - Buddy Tape
 - Post op Shoe
 - Follow up 1 Week

Oblique

Case courtesy of Dr Andrew Diron, ID: 36688

 (\mathcal{R})

AP

FRACTURE GREAT TOE PROXIMAL PHALANX

- Uebbing CM, Walsh M, Miller JB, Abraham M, Arnold C. Fracture blisters. West J Emerg Med. 2011;12(1):131–133. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088393</u>
- Ahn L, Sheth U, Mid-Shaft Clavicle Fractures, Orthobullets.com, 10/28/2020, https://www.orthobullets.com/trauma/1011/midshaft-clavicle-fractures, accessed November 17, 2020
- Honeycutt MW, Fisher M, Riehl JT, Orthopaedic Tips: A Comprehensive Review of Midshaft Clavicle Fractures, JBJS JOPA 2019;7(3):e0053
- Andersen et al: Treatment of Clavicle Fractures: Figure 8 vs. Simple Sling. Acta Orthop Scand 1987;58:71-74
- Triplet J, Proximal Humerus Fractures, Orthobullet.com, updated 7/19/2020 <u>https://www.orthobullets.com/trauma/1015/proximal-humerus-fractures</u>, accessed November 15, 2020
- Bounds EJ, Frane N, Kok SJ. Humeral Shaft Fractures. [Updated 2020 Aug 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: <u>https://www.ncbi.nlm.mih.gov/books/NBK448074/</u>
- Ekholm R, Ponzer S, Törnkvist H, Adami J, Tidermark J. The Holstein-Lewis Humeral Shaft Fracture: Aspects of Radial nerve injury, Primary treatment, and Outcome. J Orthop Trauma. 2008 Nov-Dec;22(10):693-7.

- Bounds EJ, Frane N, Kok SJ. Humeral Shaft Fractures. [Updated 2020 Aug 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK448074/</u>
- Liman MNP, Avva U, Ashurst JV, et al. Elbow Trauma. [Updated 2019 Jun 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK542228/</u>
- Sullivan CW, Hayat Z. Olecranon Fracture. [Updated 2020 Jan 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK537295/</u>
- Layson J, Best BJ. Elbow Dislocation. [Updated 2019 Nov 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK549817/</u>
- Schulte, LM, Meals CG, Neviaser RJ, Management of Adult Diaphyseal Both-bone Forearm Fractures, J AM Acad Orthop, Surg 2014;22:437-446
- Allen, D, Galeazzi Fracture, OrthoBullets, updated 1/19/20109, https://www.orthobullets.com/trauma/1029/galeazzi-fractures, retrieved April 10, 2020

- Johnson NP, Silberman M. Monteggia Fractures. [Updated 2019 Jul 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK470575/</u>
- Meaike JJ, Kakar S, management of Comminuted Distal Radius Fractures: A Critical Review, JBJS Reviews 2020;8(8)e20.00010
- Porrino JA, Maloney E, Scherer K, et al <u>Fracture of the Distal Radius</u>: Epidemiology and <u>Premanagement Radiographic Characterization</u>, American Journal of Roentgenology 2014 203:3, 551-559
- Corsino CB, Reeves RA, Sieg RN, Distal Radius Fractures, StatPearls, Treasure Island, FL, StatPearls Publishing Jan 2020
- Miller D, Sarwark J. (2019, April 1). Visual Guide to Splinting [NUEM Blog. Expert Commentary by Pirotte M]. Retrieved from http://www.nuemblog.com/blog/splinting
- Buijze G, Goslings JC, Rhemrev JS, et al. Cast immobilization with and without immobilization of the thumb for non-displaced scaphoid waist fractures: a multicenter, randomized, controlled trial. J Hand Surg Am. 2014;39:621

- Wieschhoff GG, Sheehan SE, Wortman JR, et al, Traumatic Finger Injuries: What the Orthopaedic Surgeon Wants to Know, RNSA 2016;36(4):1106-1128
- Bloom J, Overview of Metacarpal Fractures, UpToDate, updated May 10, 2021, <u>https://www.uptodate.com/contents/overview-of-metacarpal-fractures#H48141897</u> retrieved Feb 21, 2021
- Guo J, Dong W, Jin L, et al. Treatment of basicervical femoral neck fractures with proximal femoral nail antirotation. J Int Med Res. 2019;47(9):4333-4343. doi:10.1177/0300060519862957
- Yoo JI, Cha Y, Kwak J, Kim HY, Choy WS. Review on Basicervical Femoral Neck Fracture: Definition, Treatments, and Failures. *Hip Pelvis*. 2020;32(4):170-181. doi:10.5371/hp.2020.32.4.170
- Black DM, Geiger EJ, Eastelli R, et al, Atypical Femur Fracture Risk versus Fragility Fracture Prevention with Bisphosphonates, N Engl J Med 2020; 383:743-753 DOI: 10.1056/NEJMoa191652, retrievedon May 2, 2021 www.nejm.org/doi/full/10.1056/NEJMoa1916525

- Ahn L, Patella Fracture, Orthobullets, updated 5/25/2021 <u>https://www.orthobullets.com/trauma/1042/patella-fracture</u>, retrieved 6/2/2021
- van Leeuwen, C., Haak, T., Kop, M. *et al.* The additional value of gravity stress radiographs in predicting deep deltoid ligament integrity in supination external rotation ankle fractures. *Eur J Trauma Emerg Surg* 45, 727–735 (2019).
- Ehrlichman LK, Gonzalez TA, Macaulay AA, Ghorbanhoseini M, Kwon JY. Gravity Reduction View: A Radiographic Technique for the Evaluation and Management of Weber B Fibula Fractures. *Arch Bone Jt Surg*. 2017;5(2):89-95.
- Karadsheh M, Taylor BC, Forsthoefel C, Femoral Shaft Fractures, OrthoBullets, updated May 27, 2021, <u>https://www.orthobullets.com/trauma/1040/femoral-shaft-fractures</u>, retrieved June 2, 2021
- Blomberg J, Femoral Neck Fractures, OrthoBullets, updated June 1, 2021, <u>https://www.orthobullets.com/trauma/1037/femoral-neck-fractures</u>, retrieved June 4, 2021

- Kojima KE, Ferreira RV. TIBIAL SHAFT FRACTURES. *Rev Bras Ortop*. 2015;46(2):130-135. Published 2015 Dec 6. doi:10.1016/S2255-4971(15)30227-5
- Torlincasi AM, Lopez RA, Waseem M. Acute Compartment Syndrome. [Updated 2021 Feb 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK448124/</u>
- Macey, Lance R. MD; Benirschke, Stephen K. MD; Sangeorzan, Bruce J. MD; Hansen, Sigvard T. Jr MD Acute Calcaneal Fractures: Treatment Options and Results, Journal of the American Academy of Orthopaedic Surgeons: 1994:2 (1);36-43
- Whitaker C, Turvey B, Illical EM. Current Concepts in Talar Neck Fracture Management. *Curr Rev Musculoskelet Med*. 2018;11(3):456-474. doi:10.1007/s12178-018-9509-9
- Lee C, Brodke D, Perdue PW Jr, Patel T. Talus Fractures: Evaluation and Treatment. J Am Acad Orthop Surg. 2020 Oct 15;28(20):e878-e887. doi: 10.5435/JAAOS-D-20-00116. PMID: 33030854.
- Moracia-Ochagavía I, Rodríguez-Merchán EC. Lisfranc fracture-dislocations: current management. *EFORT Open Rev.* 2019;4(7):430-444. Published 2019 Jul 2. doi:10.1302/2058-5241.4.180076

- Smidt KP, Massey P. 5th Metatarsal Fracture. [Updated 2021 Apr 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021, <u>https://www.ncbi.nlm.nih.gov/books/NBK544369/</u>
- Sarpong NO, Swindell HW, Trupia EP, Vosseller JT, Metatarsal Fractures, Foot and Ankle Orthopaedics, AOFAS, 2018:1-8
- Gravlee JR, Hatch RL, Toe Fractures in Adults, UpToDate 2020; <u>https://www.uptodate.com/contents/toe-fractures-in-adults</u>, Retrieved 6/2/2021

