Quinnipiac university

Introduction

- Cardiogenic Shock (CS) is the condition in which the heart is unable to sustain an efficient cardiac output leading to hypoxia and end-organ hypoperfusion.¹⁻⁵
- There is no clear diagnostic criteria, rather it is based off of a collection of subjective and objective findings as well as clinical suspicion.¹
- CS is a condition associated with high mortality of ~50%.⁵
- Approximately 80% of all cases have acute myocardial infarction (AMI) as the causative agent. 3,4
- Other etiologies include myocarditis, acute decompensated heart failure, and thyroid disease.⁵
- Non-MI related cardiogenic shock is associated with higher mortality and 30-day readmission rates compared to MIassociated cases and seen in younger, female patients.⁴
- Management of CS may involve therapies like fluid resuscitation, catecholamines, and mechanical support devices like balloon pumps depending on etiology.^{1,3,6,7}
- An obvious gap remains in treatment protocols for non-AMI associated cardiogenic shock.^{2,5}

Image 1. Bilateral Pulmonary Edema⁸

- marijuana use.

- No daily medications.

- No rebound/guarding. Negative Murphy's.
- all extremities equally.

Figure 1. Emergency Room Course of Events.

Time	1247		1546	1645	1710		
EventHad significant leukocytosis.Benign abdominal		Passed oral intake trial.	On non-rebreather with SpO2 >90%.	Negative COVID test.	XR with pulmonary edema.		
		Repeated vitals.		ICU bed pending.	ECHO with < 20% ejection fraction.		
			Labs pending.				
	exam and imaging.	Now hypotensive,		Cultures drawn.			
		tachycardic, hypoxic of	Anticipate		Consult cardiology.		
	Plan: Ondansetron,	unclear etiology.	admission.	IV vancomycin and			
	H2 blocker, and 2L			cefepime started per	Plan: catheter lab & ICU.		
	IVF. Oral intake.	Reports shortness of breath.		protocol.			

Cardiogenic Shock in An Otherwise Healthy Young Adult Kirsten Kenny PA-S, Cindy Rossi MHS, PA-C Quinnipiac University Physician Assistant Program

Initial Brief History

• A 32-year-old male who denies past medical history presents with nausea/vomiting and headache secondary to alcohol and

• Had been drinking alcohol at friend's house previous night. • Reports 8 episodes non-bloody, non-bilious vomiting beginning at 3am. Has headache and dizziness with ambulation.

• Drank $\frac{1}{2}$ pint of tequila, 1 "cup" of rum, and smoked 1-2 marijuana joints. Denies other drug and over-the-counter medication use. Drank a Gatorade but no other intake.

• Drinks approximately 1-2 drinks/day around 3-4 times/week. • Not COVID vaccinated.

• Social history: denies other recreational drug use. Reports only consuming personal supply of alcohol and marijuana. • Past medical history, surgical history, allergies noncontributory.

• Family history: sister, alive, cardiac surgery at 18 for "clot".

Initial Physical Exam

• Vitals: Temperature of 36.6 degrees Celsius, 114 beats per minute, 20 respirations per minute, blood pressure of 118/66mmHg, pulse oximetry of 95% on room air • **General:** Non-toxic, in no acute distress.

• **Skin:** No rash, warm, dry. Capillary refill < 2 seconds. Ears, Nose, Throat: Moist mucous membranes.

• **Respiratory:** No rhonchi, wheeze, rales. Slight tachypnea. • **Cardiovascular:** Tachycardic. No murmurs, gallops, or rubs. • **Gastrointestinal:** Soft, nontender, nondistended abdomen.

• Neurologic: Alert and oriented to person, place, time. Moves

Case Description

Subsequent Pertinent Exam Findings

- Vitals: Temperature of 36.5 degrees Celsius, 138 beats per minute, 22 respirations per minute, blood pressure of 95/59 mmHg, pulse oximetry of 83% on room air.
- **General**: Diaphoretic. In respiratory distress.
- Skin: Cool, clammy.
- **CV:** Tachycardic. Additional heart sound heard.
- **Respiratory:** Breath sounds diminished with diffuse crackles.
- No changes in findings from initial for other body systems.

Differential Diagnosis

Pulmonary Embolism Acute Coronary Syndrome COVID-19 **Community Acquired Pneumonia Aspiration Pneumonia Acute Decompensated Heart Failure**

Figure 2. Initial Complete Blood Count Results

White Blood Cell Count	Hemoglobin	Hematocrit	Platelet Count		Lymphocyte Percent	•	Eosinophil Percent	Basophil Percent
23.4 Thou/uL	16.3 g/dL	48.5%	126 Thou/uL	80.4%	9.6%	8.8%	0.0%	0.3%

https://academic.oup.com/eurheartj/article/36/20/1223/2293258

Pertinent Diagnostic Findings

- Labs: troponin 0.51ng/mL, proBNP 332pg/mL, D-dimer 664ng/mL, procalcitonin 0.50ng/mL, lactic acid 4.4mmol/L. Normal TSH level.
- COVID rapid and PCR negative.
- Serial ECGs with no evidence of ACS/STEMI.
- Echocardiogram: Left ventricular systolic function was severely decreased with an estimated ejection fraction less than 20%. There was global hypokinesis.
- Chest X-ray 1-view: Bilateral pulmonary edema.
- **CT Angiography:** No evidence of acute pulmonary embolism. Scattered nodular/ground glass opacities seen throughout the bilateral lung parenchyma.

Final Diagnosis

- Cardiomyopathy likely secondary to myocarditis
- Tachycardia
- Acute Reduced Ejection Fracture Heart Failure (HFrEF) (resolved)
- Cardiogenic Shock: New York Heart Association (NYHA) Stage IV, Society for Cardiovascular Angiography and Interventions (SCAI) cardiogenic shock stage C (resolved)
- Acute Hypoxic Respiratory Failure (resolved)

https://ecgwaves.com/topic/the-standard-adult-transthoracic-echocardiogram-a-protocol-to-obtain-a-complete-study/

Outcome

- Swan-Ganz catheter placed with findings consistent with cardiogenic shock.
- Patient admitted to ICU.
- Started on milrinone drip 0.125mcg/kg/min and furosemide with clinical improvement. Metoprolol tartrate 25mg BID added.
- Work-up for etiology including cardiac MRI and bloodwork had findings consistent with myocarditis.
- Ventricular function improved and patient was discharged home on carvedilol (switched from metoprolol).
- Discharge plan included gentle up titration of 90-day guidelinedirected medical therapy with ventricle function re-evaluation and potential ICD placement.

Discussion

- Majority of CS arise as complications of cardiac etiologies, specifically AMI.^{1,5}
- Non-AMI CS tends to be seen in younger patients and has poorer clinical outcomes compared to AMI cardiogenic shock.²
- CS requires quick clinical management and initial resuscitation to protect end organs from further hypoperfusion and cell death.¹

Conclusion

- This case demonstrates the time-sensitive nature of cardiogenic shock and how quickly a patient's status can diminish.
- Given that non-AMI cardiogenic shock patients tend to be female and younger, CS should be in the differential for all acutely decompensating patients regardless of cardiac history or age.
- Research must continue to explore the management of initial resuscitation and subsequent stages as there currently are no uniform therapy guidelines.

Resources

1. Jones TL, Nakamura K, McCabe JM. Cardiogenic shock: evolving definitions and future directions in management. Open Heart. 2019;6:1-7. doi:10.1136/openhrt-2018-000960

2. Schrage B, Weimann J, Dabboura S, et al. Patient characteristics, treatment and outcome in non-ischemic vs ischemic cardiogenic shock. J Clin Med. 2021;9(4):931. doi:10.3390/jcm9040931

3. Thiele H, Ohman EM, Desch S, Eitel I, de Waha S. Management of cardiogenic shock. Eur Heart J. 2015;36:1223-1230. doi:10.1093/eurheartj/ehv051

4. Shah M, Patel B, Tripathi B, et al. Hospital mortality and thirty day readmission among patients with non-acute myocardial infarction related cardiogenic shock. Int J Cardiol. 2018;270:60-67. doi:10.1016/j.ijcard.2018.06.036

5. van Diepen S, Katz JN, Albert NM, et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. *Circulation*. 2017;136(16):232-268.

6. Ogunbayo GO, Ha LD, Ahmad Q, et al. In-hospital outcomes of percutaneous ventricular assist devices versus intraaortic balloon pumps in non-ischemia related cardiogenic shock. *Heart Lung.* 2018;47(4):392-397. doi:10.1016/j.hrtlng.2018.02.002

7. Maniuc O, Salinger T, Anders F, et al. Impella CP use in patients with non-ischaemic cardiogenic shock. ESC Heart Fail. 2019;6(4):863-866. doi:10.1002/ehf2.12446

8. Gurji HA, Ham AA. Postoperative naloxone induced pulmonary edema. *Consultant 360*. 2021;61(10). https://www.consultant360.com/article/consultant360/postoperative-naloxone-induced-pulmonary-edema

9. The Standard Adult Transthoracic Echocardiogram: Complete Imaging Protocol. ECG & ECHO Learning. September 19, 2020. https://ecgwaves.com/topic/the-standard-adult-transthoracic-echocardiogram-a-protocol-to-obtain-a-complete-study/