Perceptions Regarding Intent and Hesitancy of the COVID-19 Booster Vaccine Among PA the NYC Vaccinated Population

Jillian Hubert, PA-S¹, Victoria Crispi, PA-S¹, Megan Edgerly, PA-S¹, Amanda Haggarty, PA-S¹, Brianna Jeremiah, PA-S¹, Lauren Wilen, PA-S¹, Susanne M. Farrell, PA-C, MPAS, DFAAPA², and Anthony V. D'Antoni, MS, DC, PhD²

¹Student, Physician Assistant Program, Wagner College; ²Faculty Member, Physician Assistant Program, Wagner College, Staten Island, NY, 10301, USA

Not effective

vaccine immunity

Natural vs

RESULTS

INTRODUCTION

- Although many believed the COVID-19 pandemic's impact on morbidity and mortality would cease with the creation of a COVID-19 vaccination, previous studies indicate vaccine (Mercadante & Law, 2020) and subsequent booster hesitancy (Yadete et al., 2021).
- · Vaccine hesitancy is defined as the decision to delay or refuse vaccination despite its availability (Thompson et al., 2021).
- · In order to address the notion of continued immunity, it is important to investigate factors attributing to perceptions of booster intent or hesitancy in New York City, an early epicenter of COVID-19 transmission due to its robust population in compact distribution (Thompson et al., 2021).

PURPOSE

· The purpose of this exploratory study is to investigate the potential social and environmental factors influencing perceptions of booster vaccine intent or hesitancy in the fully COVID-19 vaccinated NYC population.

METHODS

- Wagner IRB approval was granted on December 3, 2021.
- · An a priori power analysis was performed using G-power Version 3.1.9.7. (Germany) revealing that the minimum sample size needed to achieve significance was 124 participants.
- · An electronic survey was distributed through Qualtrics XM (Provo, Utah) via social media, email and text messaging.
- Sample size was N = 160.
- · Data were analyzed with IBM SPSS version 28.0.01 (IBM, Armonk, New York) with an alpha level set at 0.05.

Inclusion Criteria

- · Those who have received two previous doses of Moderna or Pfizer or one dose of Johnson & Johnson at least two weeks prior.
- Current resident of any of the five boroughs of NYC.
- · Fully completed survey.
- Exclusion Criteria
- Those who have not received two previous doses of Moderna or Pfizer or one dose of Johnson & Johnson at least two weeks prior.
- · Not a current resident of any of the five boroughs of NYC. Incomplete survey.

		REJ	OLIS					
Table 1. Demographics of sample (N	l = 160)		Table 2. Chi-square analysis of s	urvey items				
Demographic	n	Percent	Null Hypothesis		Test	Si	gnificance	
Gender / Female	110	68.8	Items 1 - 50	One-	sample Chi-square		p < 0.05	
Age / 18-24	102	67.3	Figure 1. Belief that vaccinations	are effective	Figure 2. Belie	f the booster probably	would not wor 65.0	
Ethnicity / Caucasian	141	88.1	9.4%	Disagree	agree		[- //
Coronavirus news / Social Media sites	37	23.1	\mathbf{X}	☐ Unsure ☐ Agree ■ Strongly agr				
Borough of NYC / Staten Island	97	60.6			⁴⁰ 40			
Pre-existing conditions / No	116	72.5		52.5%				
Influenza Vaccination Status / Vaccinated	113	70.6	32.5%	52.5%	8.8%	9.4% 15.6%	25.6% Somewhat likely	40.0% Extremely like
Infected with COVID-19 / No	76	47.5	Table 3. Spearman rho correlatio	ns between variables		Responses	,	,
CONCLUSIONS		* p < 0.0	Non-compliant individuals will infect others	Vaccines are effective	Public authorities decide in our best interest	Protecting the immuno- compromised	Vaccines pr commu	
		-						

- 0.551 *

-0.497 *

 The most common factors that influence the decision to receive the COVID-19 booster among vaccinated people in NYC include (1) booster vaccine efficacy, (2) natural immunity vs. vaccine immunity, (3) booster vaccine side-effects and safety, and (4) potential allergic responses to the vaccine.

 The majority of respondents would decline the COVID-19 booster vaccine.

PUBLIC HEALTH RELEVANCE

- 0.529 *

- 0.434 *

- 0.548 *

- 0.578 *

- 0.609

- 0.624 *

- 0.687 *

-0.632*

These data highlight specific topics that prevents individuals from accepting the COVID-19 booster vaccine and outlines areas where there is a lack of knowledge. With this information, public health officials can counsel people appropriately, and thus increase the likelihood of COVID-19 booster vaccine acceptance.

#P21

Authors' Contact Information

- Jillian Hubert, PA-S | jillian.hubert@wagner.edu
- Victoria Crispi, PA-S | victoria.crispi@wagner.edu
- Megan Edgerly, PA-S | megan.edgerly@wager.edu
- Amanda Haggarty, PA-S | <u>amanda.haggarty@wagner.edu</u>
- Brianna Jeremiah, PA-S | brianna.jeremiah@wagner.edu
- Lauren Wilen, PA-S | <u>lauren.wilen@wagner.edu</u>
- Susanne M. Farrell, MPAS, DFAAPA | <u>susanne.farrell@wagner.edu</u>
- Gail Kunath-Tiburzi, MPA, PA-C | gail.tiburzi@wagner.edu
- Anthony V. D'Antoni, MS, DC, PhD | <u>a.dantoni@wagner.edu</u>

Reliability Analysis

Table 4. Cronbach's Alpha Scores for Measurement Models

Measurement models	Items	Cronbach's alpha
Vaccine Conspiracy Beliefs	20	.714
CoBQ-5C	30	.742

 Table 7.
 Spearman rho Correlation: Demographics and perceived benefits towards the booster vaccine

_	Vaccines are effective	Vaccines are safe	Protecting the immunocompromised	Vaccines are useful for me	Fully understand the vaccine	Weigh benefits and risks	Vaccines are preventive actions
Gender	-0.185 *	-0.118	-0.119	0.233 *	0.174 *	0.215 *	-0.086
NYC Borough	-0.019	-0.099	-0.048	-0.085	0.177 *	0.038	-0.074
Household Income	-0.010	0.053	0.001	-0.139	-0.173 *	-0.186 *	0.010
Education	-0.192 *	-0.144	-0.078	-0.032	0.009	-0.064	-0.133
Flu Status	-0.232 *	-0.282*	-0.279 *	0.198 *	0.121	0.148	-0.237 *
COVID-19 infection	-0.195 *	-0.147	-0.162 *	0.206 *	0.216 *	0.139	-0.167 *

* *p* < 0.05 (2 tailed)

 Table 8.
 Spearman rho Correlation: Demographics and perceived barriers towards the booster vaccine

	Dangerous side effects	Allergy	Not effective	Natural vs vaccine immunity	l am healthy	I hate needles and injections	Past COVID-19 infection	l am young	Good prognosis
Gender	0.08	0.074	0.166 *	0.141	0.036	-0.117	0.124	-0.003	0.059
Age Range	0.319 *	0.174 *	0.150	0.272 *	0.252 *	0.011	0.275 *	0.424 *	0.291 *
Ethnicity	-0.120	-0.069	-0.158 *	-0.089	–0.191 *	-0.020	-0.128	-0.132	0.057
Education	0.275 *	0.185 *	0.174 *	0.258 *	0.192 *	0.040	0.166 *	0.266 *	0.102
Pre-existing conditions	0.069	-0.053	0.162 *	0.194 *	0.380 *	-0.020	0.262 *	0.426 *	0.297 *
Flu Status	0.338 *	0.239 *	0.259 *	0.318 *	0.065	0.080	0.174 *	0.031	-0.015
COVID infection	0.203 *	0.154	0.236 *	0.320 *	0.133	0.016	0.669 *	0.228 *	0.211 *

 Table 9.
 Spearman rho Correlation: Instrument comparison

	Non compliant individuals will infect others	Large gatherings increase risk	Increased difficulty for self care during pandemic	Vaccines are effective	Public authorities decide in our best interest
Dangerous side effects	-0.439 *	-0.325 *	-0.166 *	-0.580 *	-0.444 *
Allergy	-0.277 *	-0.122	-0.135	-0.386 *	-0.235 *
Not effective	-0.551 *	-0.401 *	-0.279 *	-0.687 *	-0.529 *
Natural vs vaccine immunity	-0.497 *	-0.379 *	-0.227 *	-0.632 *	-0.434 *
I am healthy	-0.352 *	-0.376 *	-0.216 *	-0.315 *	-0.296 *
I hate needles and injections	0.106	0.209 *	0.181 *	-0.004	0.003
Past COVID-19 infection	-0.388 *	-0.253 *	-0.265 *	-0.396 *	-0.327 *
l am young	-0.419 *	-0.372 *	-0.285 *	-0.387 *	-0.295 *
Good prognosis	-0.307 *	-0.355	-0.226 *	0.212 *	-0.176 *

* *p* < 0.05 (2 tailed)

Table 10. Spearman rho Correlation: Instrument comparison

	Protecting the immunocompromised	Vaccines protect the community	My immune system is strong	Vaccine preventable diseases are not severe
Dangerous side effects	-0.510 *	-0.508 *	0.188 *	0.472 *
Allergy	-0.397 *	-0.339 *	0.159 *	0.354 *
Not effective	-0.548 *	-0.609 *	0.185 *	0.416 *
Natural vs vaccine immunity	-0.578 *	-0.624 *	0.247 *	0.457 *
I am healthy	-0.354 *	-0.386 *	0.458 *	0.347 *
I hate needles and injections	0.131	0.123	-0.133	-0.158 *
Past COVID-19 infection	-0.364 *	-0.371 *	0.156 *	0.340 *
I am young	-0.409 *	-0.411 *	0.429 *	0.412 *
Good prognosis	-0.219 *	-0.225 *	0.364 *	0.181 *

* *p* < 0.05 (2 tailed)

References

Mercadante, A. R., & Law, A. V. (2021). Will they, or Won't they? Examining patients' vaccine intention for flu and COVID-19 using the Health Belief Model. *Research in Social and Administrative Pharmacy*, *17*(9), 1596–1605. <u>https://doi.org/10.1016/j.sapharm. 2020.12.012</u>

Ruiz, J. B., & Bell, R. A. (2021). Predictors of intention to vaccinate against COVID-19: Results of a nationwide survey. *Vaccine*, 39(7), 1080–1086. <u>https://doi.org/10.1016/j.vaccine.2021.01.010</u>

Yadete, T., Batra, K., Netski, D. M., Antonio, S., Patros, M. J., & Bester, J. C. (2021). Assessing Acceptability of COVID-19 Vaccine Booster Dose among Adult Americans: A Cross-Sectional Study. *Vaccines*, 9(12), 1424. <u>https://doi.org/10.3390/vaccines9121424</u>

Callaghan, T., Moghtaderi, A., Lueck, J. A., Hotez, P., Strych, U., Dor, A., Fowler, E. F., & Motta, M. (2021). Correlates and disparities of intention to vaccinate against COVID-19. *Social Science & Medicine*, 272, 113638. <u>https://doi.org/10.1016/j.socscimed.2020.113638</u>

Malik A. et al. (n.d.). *Determinants of COVID-19 vaccine acceptance in the US*. EClinicalMedicine. Retrieved January 20, 2022, from <u>https://pubmed.ncbi.nlm.nih.gov/32838242/</u>

Oliver, S. (2021, November 19). Updates to the Evidence to Recommendation Framework: Pfizer-BioNTech and Moderna COVID-19 vaccine booster doses [Slides]. Cdc.Gov/Coronavirus.

https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-11-19/06-COVID-Oliver-508.pdf

Abbasi J. Studies Suggest COVID-19 Vaccine Boosters Save Lives. JAMA. 2022;327(2):115. doi:10.1001/jama.2021.23455

Thompson CN, Baumgartner J, Pichardo C, et al. COVID-19 Outbreak — New York City, February 29–June 1, 2020. MMWR Morb Mortal Wkly Rep 2020;69:1725–1729. DOI: <u>http://dx.doi.org/10.15585/mmwr.mm6946a2external</u>

Zingg A, Siegrist M. Measuring people's knowledge about vaccination:developing a one-dimensional scale. Vaccine 2012;30:3771–7. <u>https://doi.org/10.1016/j.vaccine.2012.03.014</u>