Urinalysis Conundrums

Janie McDaniel, MS, MLS(ASCP)SC Yale PA Online Program

Yale school of medicine

Physician Assistant Online

Disclosures

I have no relevant relationships with ineligible companies to disclose within the past 24 months. (Note: Ineligible companies as those whose primary business is producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients.)

> Yale SCHOOL OF MEDICINE Physician Assistant Online

Objectives

- At the conclusion of this session, participants should be able to:
 - Correlate urine dipstick results to providerperformed urine microscopy findings to assist in making a clinical diagnosis
 - 2. Analyze the urine dipstick and microscopic findings of common renal disorders noted in primary care
 - Utilize urinalysis dipstick and microscopic findings to separate unusual disorders from more commonly encountered disorders

Yale SCHOOL OF MEDICINE Physician Assistant Online

Question #1

In which of the following conditions are white blood cell casts commonly noted in the microscopic analysis of the urine?

- A. Urethral syndrome
- B. Chronic cystitis
- C. Renal tuberculosis
- D. Acute pyelonephritis

Question #2

Which of the following urine microscopic findings are indicative of glomerulonephritis?

A. Waxy casts

- B. Dysmorphic RBCs
- C. Calcium oxalate crystals

D. Renal tubular epithelial cells

Question #3

In which of the following conditions would a patient present with decreased glomerular filtration rate, the presence of protein in the urine, and a urine microscopic that notes the presence of broad waxy casts?

- A. Tubular necrosis
- B. Urinary tract infection
- C. Advanced renal failure
- D. Acute glomerulonephritis

Why Order a Urinalysis?

Because it is:

- A quick test to assist in diagnosis
- Relatively inexpensive
- Painless and non-invasive
- Reliable, reduce follow-up tests

- 23 year-old female presents with fever and left flank pain.
 - She also notes some dysuria about 4 weeks ago.
- Her past medical history is remarkable for recurrent urinary tract infections.
- She denies vaginal discharge.

Case 1

- T 38.7°C; P 110/min; RR 20/min; BP 114/72 mmHg
- Pulmonary and cardiac examination are normal
- No hepatosplenomegaly is noted
- Moderate left costovertebral angle tenderness is noted
- Pelvic exam is normal

CBC

- WBC 10,200/μL
- Hgb 12.0 g/dl
- Hct 36%
- MCV 86 fL
- PLT 290,000/μL
- BUN 3 mg/dl
- Creatinine 0.4 mg/dl

Case 1

Urinalysis

- Color yellow
- Appearance cloudy
- Specific gravity 1.010
- pH 5.0
- Ketones Negative
- Protein 2+
- Glucose Negative
- Bilirubin Negative
- Blood 1+
- Nitrite Positive
- Leukocyte esterase 3+

Case #1, Question #1

Which of the following conditions are associated with a urinalysis report that is positive for protein, nitrites and leukocyte esterase?

- A. Exercise induced proteinuria
- B. Leukemia
- C. Renal tubular damage
- D. Urinary tract infection

Case #1, Question #1 Rationale

- Exercise induced proteinuria
 - Positive for protein, but negative for nitrites and leukocyte esterase
- Leukemia
 - Negative for all three, unless there is renal involvement
- Renal tubular damage
 - Positive for protein and possibly WBCs, but not positive for bacteria
- Urinary tract infection
 - Positive for all three,
 especially if infection is in the kidneys

Case # 1, Question # 2

Given this patient's HPI and urinalysis report, what type of casts would you expect to see on the microscopic analysis of the urine sediment?

- A. Hyaline
- B. Red blood cell
- C. White blood cell
- D. Waxy

Case 1 – Urine Microscopic

Microscopic:

- WBCs:
 - 20-30 / hpf
- RBCs:
 - 5-10 / hpf
- Epithelial Cells:
 - Few squamous
 - Few transitional
 - Few renal tubular
- Bacteria:
 - 3+
- Casts:
 - 0-2 WBC casts/hpf

Case # 1, Question # 3

Given the HPI, urine dipstick results and urine microscopic findings, what is the most probable diagnosis for this patient?

- A. Glomerulonephritis
- B. Pyelonephritis
- C. Acute kidney injury
- D. Chronic kidney disease

Case 1

- Final diagnosis
 - Pyelonephritis
 - Presence of WBC casts along with WBCs, RBCs, protein and bacteria confirm diagnosis
 - Presence of transitional and renal tubular epithelial cells indicates infection beyond bladder
- Culture positive for E. coli

Lee M. *Basic Skills in Interpreting Laboratory Data*. American Society Of Health System Pharmacists; 2017, 247-260.

White Blood Cells in Urine

- Normal = 0-3/hpf
- Pyuria (usually segmented neutrophils)
- Any renal or urinary tract disease or infection (acute pyelonephritis, cystitis, prostatitis, urethritis)
- Often in clumps and accompanied by bacteria in infection

Red Blood Cells in Urine

- Normal = 0-3/hpf
- May be seen following strenuous exercise, but disappear with rest
- Increased with damage to glomerular membrane (dysmorphic RBCs) or vascular injury

Epithelial Cells in Urine

Squamous

 Large with irregular cytoplasm & central nucleus
 From lower urinary tract; vaginal contamination

Epithelial Cells in Urine

- Transitional
 - Smaller than squamous; round/pear shaped; central nucleus
 - From renal pelvis, bladder, upper urethra

Epithelial Cells in Urine

- Renal Tubular (RTE)

 Round, 2x size of WBC, single round nucleus centrally located
 - From renal tubules
 Increased in kidney inflammation and tubular necrosis

Case 2

 A 17-year-old male has had respiratory tract infections intermittently for the past few months. His mother has made an appt. to see you because he has been complaining of headaches and "fuzzy" vision for the past few days. Upon exam, he appears slightly edematous.

Case 2 - Urinalysis

- Color light brown
- Appearance cloudy
- Glucose negative
- Bilirubin negative
- Ketones negative
- Sp. Gr. 1.025
- Blood 3+
- pH 5.0
- Protein 4+
- Urobilinogen normal
- Nitrites negative
- Leukocyte esterase trace

Case #2, Question #1

What can the presence of a trace of leukocyte esterase in this urine be attributed to?

- A. Presence of 3+ blood
- B. Low-grade infection
- C. False positive dipstick reading
- D. High urine specific gravity

Case # 2, Question # 1 Rationale

Remember: Leukocyte esterase produced by WBCs

- Presence of 3+ blood
 - Ratio of RBCs to WBCs in whole blood = 20:1
- Low-grade infection
 - Possible, but no nitrites or indications of infection
- False positive dipstick reading
 - No false positives, only false negatives from \uparrow urine concentration
- High urine specific gravity
 - False negatives from \uparrow urine concentration

Case #2, Question #2

What can the presence of 4+ protein in this urine be attributed to?

- A. Presence of 3+ blood
- B. Low-grade infection
- C. Damage to the glomerulus
- D. High protein diet

Case # 2, Question # 2 Rationale

Remember: Albumin (protein) typically not filtered out at glomerulus

- Presence of 3+ blood
 - Too much protein for amount of blood present
- Low-grade infection
 - Too much protein for low-grade infection
- Damage to the glomerulus
 - Allows more high-molecular weight substances to pass through the glomerular filter
- High protein diet
 - Protein not filtered out in urine if no glomerular damage

Case # 2, Question # 3

Given this patient's HPI and urinalysis report, what type of casts would you expect to see on the microscopic analysis of the urine sediment?

- A. Hyaline
- B. Red blood cell
- C. White blood cell
- D. Waxy

Microscopic – Case 2

Microscopic:

- WBCs:
 - 5-10 / hpf
- RBCs:
 - 50-100 / hpf (or TNTC)
 - Dysmorphic RBCs present
- Casts:
 - 2-5 granular casts / lpf
 - 0-2 red cell casts / lpf

Case # 2, Question # 4

Given the HPI, urine dipstick results and urine microscopic findings, what is the most probable diagnosis for this patient?

- A. Glomerulonephritis
- B. Pyelonephritis
- C. Exercise-induced proteinuria
- D. Chronic kidney disease

Case 2, Question #4 Rationale

Diagnosis

- Acute Kidney Injury (AKI) probably due to poststreptococcal glomerulonephritis, particularly with presence of dysmorphic RBCs
- Positive protein due to inflammation to glomerulus and presence of blood
- Granular and RBC casts due to glomerulonephritis and prolonged AKI

Eison, T. Matthew, et al. "Post-Streptococcal Acute Glomerulonephritis in Children: Clinical Features and Pathogenesis." *Pediatric Nephrology*, vol. 26, no. 2, 2010, pp. 165–180.

Casts

- Casts protein gels or fibers of protein mold to lumina of kidney tubule
- Formation favored by: oliguria, acid pH, high specific gravity, and presence of protein.
- Any particulate or cellular material present in abnormal tubular conditions readily adheres to the sticky protein matrix.
- Major constituent of casts = Tamm-Horsfall protein
- Reported as: number per low power field

Hyaline Casts

- Hyaline Cast
 - Tubular secretion of Tamm-Horsfall protein that aggregates into fibrils
 - Low refractive index
 - Small numbers not abnormal
 - Increased with fever, exercise
 - Normal = 0-2/hpf

Granular Casts

- Coarse and fine granular casts
 - Nonpathologic plasma proteins, bacteria, or crystals precipitated in T-H protein following stress/strenuous exercise
 - Pathologic degenerated cellular casts
- Muddy brown granular cast
 - Seen in acute renal failure

WBC Casts

- WBC Cast
 - WBCs enmeshed in or attached to Tamm-Horsfall protein matrix
 - Seen in acute
 pyelonephritis
- Not to be confused with clumps of WBCs seen in ascending urinary tract infections

RBC Casts

• RBC cast

- RBCs enmeshed in or attached to
 Tamm-Horsfall protein matrix
- Seen in acute
 glomerulonephritis
- Also seen in strenuous exercise

RTE Casts

• RTE Cast

- Renal tubular cells attached to Tamm-Horsfall protein matrix
- Seen in tubular necrosis

RTE Casts

• RTE Cast

- Renal tubular cells attached to Tamm-Horsfall protein matrix
- Seen in tubular necrosis

Waxy Casts

- Waxy Cast
 - Final stage of a hyaline cast
 - High refractive index
 - Implies
 - Oliguria
 - Renal failure

 50-year-old male presents with severe left flank pain and gross hematuria.
 Denies fever or chills
 Mild nausea without vomiting

Case 3

- T 37.6°C; P 96/min; RR 16/min; BP 135/85 mmHg
- Patient is well developed and well nourished
- Abdominal and genital exam is normal
- Left costovertebral angle tenderness is noted

Case 3

Laboratory

- WBC 8,900/μL
- Hgb/Hct 15.0 g/dl/45%
- PLT 290,000/μL
- Sodium 135 mEq/L
- Potassium 3.5 mEq/L
- Chloride 100 mEq/L
- Carbon dioxide 25 mEq/L
- BUN 13 mg/dl
- Creatinine 0.9 mg/dl

Urinalysis

- Color red
- Appearance cloudy
- Specific gravity 1.018
- pH 5.5
- Glucose Negative
- Protein 1+
- Blood 3+
- Bilirubin Negative
- Nitrite Negative
- Leukocyte esterase Negative

Case #3, Question #1

What is the most probable cause for the presence of blood in this urine sample?

A. Exercise

- B. Infection
- C. Injury to the kidney or ureters
- D. Damage to the glomerular membrane

Case # 3, Question # 1 Rationale

- Exercise
 - Exercise typically yields only small amounts of blood in urine
- Infection
 - Only small amounts of blood resulting from infection
- Injury to the kidney or ureters

 Most likely cause, from injury or trauma
- Damage to the glomerular membrane
 - Results in dysmorphic RBCs

Case 3 – Urine Microscopic

Microscopic:

- WBCs:
 - 2-4 / hpf
- RBCs:
 - 50-100 / hpf (or TNTC)
- Crystals:
 - Many calcium oxalate crystals

Case #3, Question #2

What do the presence of calcium oxalate crystals in the urine indicate?

A. Gout

- B. Kidney stones
- C. Chronic Cystitis
- D. Liver failure

Case # 3, Question # 2 Rationale

- Gout
 - Uric acid crystals
- Kidney stones
 Calcium oxalate crystals
- Chronic cystitis
 - Triple phosphate crystals
- Liver failure
 - Bilirubin or tyrosine crystals

Final Diagnosis –Nephrolithiasis

Kazi, Saifullah N., and Robert L. Benz. "Work-up of Hematuria." *Primary Care: Clinics in Office Practice*, vol. 41, no. 4, 2014, pp. 737–748.

Common Crystals in Acid Urine

- Amorphous urates

 Granular not crystalline
 Pink sediment when
 - Pink sediment when refrigerated

- Uric acid
 - Yellow, brown, or colorless
 - Rhomboid, barrel, or rosette
 - Seen in gout or high nucleic acid turnover

Common Crystal in Acid/Neutral Urine

- Calcium oxalate
 - Small, colorless envelope
 - Tomatoes, spinach, cocoa, ethylene glycol
 - Renal calculi

Common Crystals in Alkaline Urine

- Amorphous phosphates
 - Granular not crystalline
 - Identical to amorphous urates (pH determines)
- Triple phosphate
 - Coffin lid, colorless
 - Large 3-6 sided prisms
 - Chronic cystitis
- Ammonium biurates
 - thorn apples
 - Yellow, brown spheres with spikes

Abnormal Crystals

- Cystine
 - Colorless, flat hexagons
 - Cystinuria
- Tyrosine
 - Fine needles in sheaves
 - Liver disease
- Bilirubin
 - Red, brown needles
- Cholesterol
 - Large, flat, transparent plates, notched corners
 - Lipiduria

Yeast and Mucous

• Yeast

- Budding and hyphae
- Diabetics or in women with vaginal yeast infections
- Easily confused with RBCs
- Mucous
 - Protein produced by glands and epithelial cells in the GU tract
 - Not clinically significant
 - Threadlike structures, low refractive index

Artifacts

- Artifacts
 - Oil
 - Cloth fibers
 - Fecal fibers
 - Hair
 - Cornstarch and talcum
- Starch granules (crystals) easily confused with RBCs

Case 4

- 65-year-old female presents with RUQ pain that radiates around to the back, nausea, and vomiting.
 - On admission the patient is orthostatic and spikes a fever to 39°C
 - She is treated with IV antibiotics
- No prior history of renal dysfunction

Admission

- Sodium 146 mEq/L
- Potassium 4.1 mEq/L
- Chloride 111 mEq/L
- Carbon dioxide 22 mEq/L
- Glucose 195 mg/dl
- BUN 35 mg/dl
- Creatinine 1.6 mg/dl
- Elevated WBC with left shift

Day 1 post admission

Case 4

- Sodium 140 mEq/L
- Potassium 5.0 mEq/L
- Chloride 100 mEq/L
- Carbon dioxide 15 mEq/L
- Glucose 130 mg/dl
- BUN 40 mg/dl
- Creatinine 2.5 mg/dl
- Urine output: 100cc/12 hours

Case #4, Question #1

Given this patient's BUN and Creatinine values, as well as her urine output, what type of epithelial cells would you expect to find in her urine sediment?

- A. Squamous
- B. Transitional
- C. Renal tubular
- D. Oval fat bodies

Case #4, Question #1 Rationale

• Squamous

- Lower urinary tract and vaginal contamination
- Transitional
 - Renal pelvis, bladder, upper urethra
- Renal tubular
 - Renal tubules; increased in kidney inflammation
- Oval fat bodies
 - Free fat droplets
 within renal tubular cells

Case 4 - Urinalysis

- Specific gravity 1.010
- pH 5.0
- Glucose Negative
- Protein 1+
- Blood 1+
- Bilirubin Negative
- Nitrite Negative
- Leukocyte esterase -Negative

Case 4

3 Days Later

- Oliguria continues
- Bun 100 mg/dl
- Creatinine 5.5 mg/dl

Case #4, Question #2

If this patient's oliguria continues, what type of cast would you expect to find in the microscopic examination of her urine sediment?

- A. Hyaline
- B. White blood cell
- C. Red blood cell
- D. Waxy

Case #4, Question #2 Rationale

- Hyaline
 - Can be normal
 - increased with fever/exercise
- White blood cell
 - Pyelonephritis
- Red blood cell
 - Glomerulonephritis
- Waxy

- Implies oliguria and renal failure

Case #4, Question #3

What is the most likely diagnosis for this patient?

- A. Acute tubular necrosis
- B. Chronic kidney disease
- C. Dehydration
- D. Urethral obstruction

Case #4, Question #3 Rationale

- Acute tubular necrosis
 - 2012 KDIGO guidelines¹
 - Rise in creatinine of 0.3 mg/dL in 24 hrs
 - Rise in creatinine of >1.5 over 7-day period
 - Urine volume $\leq 0.5 \text{ mL/kg per hour for 6 hours}$
- Chronic kidney disease
 - Patient presented acutely (3 days)
- Dehydration
 - Prerenal disease
- Urethral obstruction
 - Post-renal disease

¹Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 2012; 120:c179.

Final Diagnosis Acute kidney injury Acute tubular necrosis

Perazella, M. A., et al. "Diagnostic Value of Urine Microscopy for Differential Diagnosis of Acute Kidney Injury in Hospitalized Patients." *Clinical Journal of the American Society of Nephrology*, vol. 3, no. 6, Oct. 2008, pp. 1615–1619.

Clinical Utility of Urine Dipstick Testing

Urine Dipstick Test	Disease Process
Leukocytes Nitrites	Urinary Tract Infection
pH Occult Blood	Renal Cancer Kidney Stones Bladder Cancer
Protein Leukocytes Blood	Chronic Kidney Disease
Glucose Ketones	Diabetes Gestational Diabetes Eating Disorders
Bilirubin Urobilinogen	Liver Function

Should you order a microscopic on a urine with negative dipstick readings?

Things to Consider

- Patient presentation
- Appearance of urine
- Specific gravity of urine
- pH of urine

Question #1

In which of the following conditions are white blood cell casts commonly noted in the microscopic analysis of the urine?

- A. Urethral syndrome
- B. Chronic cystitis
- C. Renal tuberculosis
- D. Acute pyelonephritis

Question #2

Which of the following urine microscopic findings are indicative of glomerulonephritis?

A. Waxy casts

- B. Dysmorphic RBCs
- C. Calcium oxalate crystals

D. Renal tubular epithelial cells

Question #3

In which of the following conditions would a patient present with decreased glomerular filtration rate, the presence of protein in the urine, and a urine microscopic that notes the presence of broad waxy casts?

- A. Tubular necrosis
- B. Urinary tract infection
- C. Advanced renal failure
- D. Acute glomerulonephritis

Take Home Points

- Urine microscopy can be combined with urine chemistry results to make a more accurate clinical diagnosis.
- Understanding the significance of microscopic elements found in urine can provide a better understanding of renal disease.
- Specific combinations of pathologic urine microscopic elements are associated with various stages of renal disease.

Yale SCHOOL OF MEDICINE Physician Assistant Online

References

- Laposata M. Laboratory Medicine: the Diagnosis of Disease in the Clinical Laboratory. New York: McGraw-Hill Medical; 2014.
- Lee M. *Basic Skills in Interpreting Laboratory Data*. American Society Of Health-sys; 2017.
- Mundt LA, Shanahan K, Graff L. *Graffs Textbook of Routine Urinalysis and Body Fluids*. Philadelphia: Wolters Kluwer/ Lippincott Williams & Wilkins; 2011.
- Palmer BF, Clegg DJ. The Use of Selected Urine Chemistries in the Diagnosis of Kidney Disorders. Clin J Am Soc Nephrol. 2019 Feb 7;14(2):306-316. doi: 10.2215/CJN.10330818. Epub 2019 Jan 9. Erratum in: Clin J Am Soc Nephrol. 2019 Aug 7;14(8):1241. PMID: 30626576; PMCID: PMC6390907.
- Simerville JA, Maxted WC, Pahira JJ. Urinalysis: A comprehensive review. *Am Fam Physician.* 2005;71(6):1153-1162.

Yale SCHOOL OF MEDICINE Physician Assistant Online

Questions?

Jane McDaniel, MS, MLS(ASCP)SC Lecturer and Director of Admissions Yale Physician Assistant Online Program 100 Church Street South, Suite A230 | New Haven, CT 06519 Mailing: PO Box 208004 | New Haven, CT 06520-8004

336.314.7002 | F: 203.785.6391 | jane.mcdaniel@yale.edu

Yale SCHOOL OF MEDICINE Physician Assistant Online