

POINT-OF-CARE ULTRASOUND IN CRITICAL ILLNESS

MIKE BREUNIG, PA-C

AAPA 2022 Indianapolis, IN

DISCLOSURES

None

LEARNING OBJECTIVE

- Summarize scope and indications for Point-of-Care Ultrasound (POCUS) in the setting of acute, critical illness.
- Interpret POCUS images in the context of acute, critical illness.
- Contrast evidence for standard of care with POCUS.
- Discuss the effect POCUS has on diagnostic evaluation and treatment of acute, critical illness.

INDICATOR MARKERS

INDICATOR MARKERS

Patient's Left

SLIDE CONVENTION

CASE (TOPIC) 1

Scope

- Following a traumatic injury, rapidly assess for free fluid (presumed bleeding) or air following (presumed pathologic) suggesting injury.
 - Abdominal cavity (RUQ, LUQ, Pelvis) → intra-abdominal bleed
 - Heart \rightarrow hemopericardium
 - Lung \rightarrow hemothorax or pneumothorax
- Indications
 - Trauma

Subcostal 4 Chamber:

• Hemopericardium

<u>RUQ</u>:

- Intra-abdominal bleed
- Subdiaphragmatic space
- Hepatorenal space
- Caudal tip of kidney

Lung Apices:

• Pneumothorax

<u>LUQ</u>:

- Intra-abdominal bleed
- Subdiaphragmatic space
- Splenorenal space
- Caudal tip of kidney

Bladder:

- Intra-abdominal bleed
- Rectovesicular + Ureterovesicular

- Location of Fluid in + eFAST exams:
 - Right Upper Quadrant 67%
 - Pelvis 48%
 - Left Upper Quadrant 35%
- Location can be patient dependent:
 - Supine / brought by EMS → RUQ most common
 - Upright / Ambulatory \rightarrow Pelvis is more common

Lobo, V, Hunter-Behrend M, Cullnan E, Higbee R, Phillips C, Williams S, Perera P, Gharahbaghian L. Caudal edge of the liver in the right upper quadrant view is the most sensitive area of free fluid in the FAST exam.

Chest:

- Sensitivity 96%
- Specificity 99%
- Abdomen:
 - Sensitivity 68 71%
 - Specificity 95%
- Repeat assessments:
 - Sensitivity 71% \rightarrow 93%

- Use of eFAST in trauma
 - Changed management in 33% of cases
 - Time to OR 64% faster
 - 27% fewer hospital days

• Jump-started POCUS as we know it.

- Asked to urgently evaluate a 74 year-old gentleman for confusion and hypotension.
 - Unable to provide history.
- Hospital Course:
 - Admitted for osteomyelitis of the left lower extremity, status post BKA
 - Diagnosed with critical limb ischemia of the right upper extremity and started on a heparin infusion.

- Past Medical History:
 - ESRD on HD
 - Diastolic left ventricular heart failure.
 - Diabetes mellitus type II.
- Past Social History:
 - Smoker (50 pack years).
 - Daily alcohol use.

Vital Signs:

- HR 107
- BP 84/55 (from 148/90)
- SpO2 98%
- RR 18
- T 36.8 Celsius

Exam:

- Mental Alert to person, not place or time. Lethargic. CAM positive.
- Heart Regular rhythm and rate.
- Lungs Faint crackles at the left base.
- Abdomen Mildly tender to palpation.

EGLS

RUSH: HI-MAP

FATE

RUSH: Pump, Tank, Pipes

ACES

FREE

- Weingart SD, Duque D, Nelson B. The RUSH Exam: Rapid Ultrasound for Shock and Hypotension. <u>https://emcrit.org/rush-exam/original-rush-article/</u>
- Perera P, Mailhot, T, Riley D, Mandavia D. The RUSH Exam: Rapid Ultrasound in Shock in the Evaluation of the Critically III. Emerg Med Clin N Am 2010;28:29–56.
- Lanctot JF, Valois M, Beaulieu Y. EGLS: Echo-Guided Life Support An algorithmic approach to undifferentiated shock. Crit Ultrasound J 2001;3:123-129.
- Ferrada P, Murthi S, Anand RJ, Bochicchio GV, Scalea T. Transthoracic Focused Rapid Echocardiographic Examination: Real-Time Evaluation of Fluid Status in Critically III Trauma Patients. J Trauma. 2011;70:56-64.

• Systematic POCUS evaluation to determine the cause / type of shock.

- FoCUS
- Lung
- Aorta
- Abdominal free fluid
- DVT
- Soft tissue

Goal:

- 1. Quickly rule in / rule out specific pathology.
- 2. Narrow differential diagnosis.
- 3. Characterize type of shock / hypotension.

	Hypovolemic	Vasodilatory	Cardiogenic	Obstructive
Heart	Hyperdynamic LV function		Reduced / Severely Reduced I V fxn RV Dilation (MI)	+/- Dilated RV (PE) +/- Pericardial Effusion (Cardiac Tamponade)
IVC	Small IVC		Dilated IVC	Dilated IVC
Morrison's Pouch	+/- Abdominal free fluid (hemorrhage)	Normal	+/- Abdominal free fluid (ascites)	Normal
Aorta	+/- Aortic aneurysm / dissection	Normal	Normal	Normal
Pulmonary	Normal	+/- Consolidation (pneumonia)	B-Lines	+/- Absent lung sliding (pneumothorax)
Peripheral Veins	Normal	Normal	Normal	+/- DVT

5 Cardinal Views of the Heart

- Parasternal Long Axis (PLAX)
- Parasternal Short Axis (PSAX)
- Apical 4 Chamber (A4C)
- Subcostal 4 Chamber (S4C)
- Inferior Vena Cava (IVC)

5 Cardinal Views of the Heart

- Parasternal Long Axis (PLAX)
- Parasternal Short Axis (PSAX)
- Apical 4 Chamber (A4C)
- Subcostal 4 Chamber (S4C)
- Inferior Vena Cava (IVC)

FoCUS A4C

FoCUS

CASE 2 A4C

Pericardial Effusion

- Sensitivity 96%
- Specificity 98%

Cardiac Tamponade

- RA Systolic Collapse
 - Sensitivity 64-100%
 - Specificity 82%
- RV Diastolic Collapse
 - Sensitivity 60-92%
 - Specificity 85-100%
- IVC with collapse
 - Sensitivity 97%
 - Mandavia DP, Hoffner RJ, Mahaney K, Henderson SO. Bedside echocardiography by emergency physicians. Ann Emerg Med. 2001;38:377-382.
 - Gillam LD, Guyer DE, Gibson TC, et al. Hydrodynamic compression of the right atrium: a new echocardiographic sign of cardiac tamponade. Circulation. 1983:68(2);294-301.
 - Singh S, Wann LS, Schuchard GH, et al. Right ventricular and right atrial collapse in patients with cardiac tamponade – a combined echocardiographic and hemodynamic study. Circulation. 1984:70(6);966-971.

©2021 Mayo Foundation for Medical Education and Research | slide-35

Cardiac Tamponade

Finding	Sensitivity	Specificit	у
Hypotension	26% (16-36%)	N/A	
Elevated JVP	76% (62-90%)	N/A	
Muffled Heart Sounds	28% (21-35%)	N/A	
Pulsus Paradoxus	82-98%	83%	2 Studies; 1981; 56 patients
RA Systolic Collapse	64-100%	82%	
RV Diastolic Collapse	astolic Collapse 60-92% 85-100%		
Normal IVC	97%	-	

Aids in Diagnosis

- Decreased uncertainty
- Narrower DDx
- More definitive diagnoses

No effect on Patient Centered Outcomes

- Mortality
- ICU / Hospital LOS

- Shokoohi H, Boniface KS, Pouramand A, Liu YT, et al. Bedside Ultrasound Reduces Diagnostic Uncertainty and Guides Resuscitation in Patients With Undifferentiated Hypotension. Critical Care Medicine Journal 2015;43(12):2562-2569.
- Jones AE, Tayal VS, Sullivan DM, et al: Randomized, controlled trialof immediate versus delayed goal-directed ultrasound to identify the cause of nontraumatic hypotension in emergency department patients. Crit Care Med 2004; 32:1703–1708
- Atkinson PR, Milne J, Diegelman L, Lamprecht H, StanderM, Lussier D, et al. Does Point-of-Care Ultrasonography Improve Clinical Outcomes in Emergency Department Patients With Undifferentiated Hypotension? An International Randomized Controlled Trial From the SHoC-ED. Annals of Emergency Medicine 2018.

Diagnostic Evaluation

Measurement	Standard of Care	Standard of Care + POCUS
Viable Diagnoses on initial evaluation	9	4
Provider confidence in diagnosis	50%	80%
Definitive diagnosis on initial evaluation	0.8%	12.7%

• Diagnosis by POCUS has excellent concordance with final consensus diagnosis (*k*=0.80).

- Shokoohi H, Boniface KS, Pouramand A, Liu YT, et al. Bedside Ultrasound Reduces Diagnostic Uncertainty and Guides Resuscitation in Patients With Undifferentiated Hypotension. Critical Care Medicine Journal 2015;43(12):2562-2569.
- Jones AE, Tayal VS, Sullivan DM, et al: Randomized, controlled trialof immediate versus delayed goal-directed ultrasound to identifythe cause of nontraumatic hypotension in emergency departmentpatients. Crit Care Med 2004; 32:1703–1708
- Atkinson PR, Milne J, Diegelman L, Lamprecht H, StanderM, Lussier D, et al. Does Point-of-Care Ultrasonography Improve Clinical Outcomes in Emergency Department Patients With Undifferentiated Hypotension? An International Randomized Controlled Trial From the SHoC-ED. Annals of Emergency Medicine 2018.

- The diagnostic accuracy of a point-of-care ultrasound protocol for shock etiology: A systematic review and meta-analysis (2019)
 - Hypovolemic shock: LR+ 8.25, LR- 0.19
 - Cardiogenic shock: LR+ 24.14, LR- 0.24
 - Obstructive shock: LR+ 40.54, LR-0.13
 - Distributive shock: LR+ 17.56, LR- 0.30
 - Mixed shock: LR+ 12.91, LR- 0.32

Stickles SP, Carpenter CR, Gekle R, Kraus CK, Scoville C, Theodoro D, Tran VH, Ubiñas G, Raio C. The diagnostic accuracy of a point-of-care ultrasound protocol for shock etiology: A systematic review and meta-analysis. CJEM. 2019 May;21(3):406-417. doi: 10.1017/cem.2018.498. Epub 2019 Jan 30. PMID: 30696496.

Does Point-of-Care Ultrasonography Improve Clinical Outcomes in Emergency Department Patients With Undifferentiated Hypotension? An International Randomized Controlled Trial From the SHoC-ED Investigators

- Primary Outcomes:
 - 30 day mortality or discharge survival
- Results:
 - No difference between standard of care vs standard of care + POCUS

Does Point-of-Care Ultrasonography Improve Clinical Outcomes in Emergency Department Patients With Undifferentiated Hypotension? An International Randomized Controlled Trial From the SHoC-ED Investigators

	POCUS (138)	Control (135)
Sepsis	74 (53.6%)	68 (50.4%)
Dehydration	17 (12.3%)	20 (14.8%)
LV failure	10 (7.2%)	12 (8.9%)
Other (medications, hemorrhage, autonomic dysfunction, arrhythmia, etc)	34 (24%)	34 (25%)
Aortic Dissection	2 (1.4%)	0
Tension Pneumothorax	1 (0.7%)	0 (0%)
Cardiac Tamponade	1 (0.7%)	1 (0.7%)

- A 62 year-old female was admitted to your service overnight from the ED for complaints of fevers and rigors over the last 2 days.
- She endorses:
 - Dysuria
 - Urinary frequency
 - Urinary urgency

- Past Medical / Surgical History:
 - Pseudomonas aeruginosa UTI (~3 months prior).
 - Hypertension
 - Left ventricular diastolic heart failure

- Many gram negative bacilli
- RBC normal
- WBC > 100 / hpf

Lactate 3.7

- HR 112
- BP <u>98/55</u>
- RR 24
- SpO2 91%
- Tmax 39.0 C

Lactate 2.4

I/O's +2.6L

• DO NOT IGNORE THE GUIDELINES

- Fluid Responsiveness An increase of stroke volume of 10-15% after the patient receives 500 ml of crystalloid over 10-15 minutes
 - IVC size / Respiratory variation

- Accuracy of Ultrasonographic Measurements of Inferior Vena Cava to Determine Fluid Responsiveness: A Systematic Review and Meta-Analysis (2020)
 - Pooled sensitivity 71%, specificity 75%; LR +2.8 LR -0.39.

Orso D, Paoli I, Piani T, Cilenti FL, Cristiani L, Guglielmo N. Accuracy of Ultrasonographic Measurements of Inferior Vena Cava to Determine Fluid Responsiveness: A Systematic Review and Meta-Analysis. Journal of Intensive Care Medicine. 2020; 35(4)354-363.

©2021 Mayo Foundation for Medical Education and Research | slide-48

Intravascular Volume Status

 Fluid Tolerance – The ability to receive IV fluids without developing adverse affects; such as, pulmonary edema/hypoxia.

- Theerawit P, Tomuan N, Sutherasan Y, Kiatboonsri S. Critical Care 2012,16(Suppl 1): P248. doi: 10.1186/cc10855.
- Lictenstein D, Karakitsos D. Integrating lung ultrasound in the hemodynamic evaluation of acute circulatory failure (the fluid administration limited by lung sonography protocol). Journal of Critical Care (2012)27, 533.e11–533.e19.

©2021 Mayo Foundation for Medical Education and Research | slide-50

	Fluid Tolerance	Fluid Intolerance
Heart	Hyperdynamic LV Function Small RV / Normal RV Function	Reduced LV Function Dilated RV / reduced RV Function
IVC	Small Collapsing	Large Reduced collapse
Lung	A-Lines	B-Lines

- Theerawit P, Tomuan N, Sutherasan Y, Kiatboonsri S. Critical Care 2012,16(Suppl 1): P248. doi: 10.1186/cc10855.
- Lictenstein D, Karakitsos D. Integrating lung ultrasound in the hemodynamic evaluation of acute circulatory failure (the fluid administration limited by lung sonography protocol). Journal of Critical Care (2012)27, 533.e11–533.e19 ©2021 Mayo Foundation for Medical Education and Research | slide-51

FoCUS PLAX

Apex

1. Endocardial Excursion 2. Myocardial Thickening 3. E Point Septal Separation RV Base Aortic Valve LV Mitral Valve LA

13

CASE 3 PLAX

CASE 3 LUNGS

LUNG ULTRASOUND B LINES

	Fluid Tolerance	Fluid Intolerance
Heart	Hyperdynamic LV Function Small RV / Normal RV Function	Reduced LV Function Dilated RV / reduced RV Function
IVC	Small Collapsing	Large Reduced collapse
Lung	A-Lines	B-Lines

- Theerawit P, Tomuan N, Sutherasan Y, Kiatboonsri S. Critical Care 2012,16(Suppl 1): P248. doi: 10.1186/cc10855.
- Lictenstein D, Karakitsos D. Integrating lung ultrasound in the hemodynamic evaluation of acute circulatory failure (the fluid administration limited by lung sonography protocol). Journal of Critical Care (2012)27, 533.e11–533.e19 ©2021 Mayo Foundation for Medical Education and Research | slide-59

POCUS IN SEPSIS

Accuracy of point of care ultrasound to identify the source of infection in septic patients: a
prospective study

Standard of Care (History / Physical / Basic labs)

VS

Standard of Care + Targeted POCUS (Kidneys, soft tissues, lungs, gallbladder, etc.)

POCUS IN SEPSIS

Accuracy of point of care ultrasound to identify the source of infection in septic patients: a
prospective study

	Standard of Care	Standard of Care + POCUS
Sensitivity	48%	73%
Specificity	86%	95%
LR+	3.54	16.1
LR-	0.59	0.28
Diagnostic Accuracy	53%	75%

POCUS IN SEPSIS

- Accuracy of point of care ultrasound to identify the source of infection in septic patients: a
 prospective study
 - Antibiotic Regimen altered in 24% of cases
 - Diagnosis made substantially quicker

POCUS OF THE KIDNEYS

- Scope:
 - Nephrolithiasis
 - Hydronephrosis

• Indications:

- AKI
- UTI with Sepsis
- Renal colic

	Sensitivity	Specificity
Nephrolithiasis	19 – 62%	90 – 98%
Hydronephrosis	72 – 97%	73 – 93%

- Yilmaz S, Sindel T, Arslan G, Ozkaynak C, Karaali K, et al. Renal colic: Comparison of spiral CT, US, and IVU in detection of ureteral calculi. Eur Radiol. 1998;8:212-217.
- Sheafor DH, Hertzber BS, Freed KS, Carroll BA, Keogan MT, Paulson EK, DeLong DM, Nelson RC. Nonenhanced Helical CT and US in the Emergency Evaluation of Patients with Renal Colic: Prospective Comparison. Radiology. 2000;217:792–797.
- Fowler KA, Locken JA, Duchesne JH, Williamson MR. US for Detecting Renal Calculi with Nonenhanced CT as a Reference Standard. Radiology. 2002; 222:109–113.
- Kanno T, Kubota M, Sakamoto H, Nishiyama R, Okada T, Higashi Y, Yamada H. Determining the Efficacy of Ultrasonography for the Detection of Ureteral Stone. Urology. 2014;84:533-537.

©2021 Mayo Foundation for Medical Education and Research | slide-63

RENAL POCUS

RENAL POCUS

RENAL POCUS

CASE 3 RENAL POCUS

POCUS USES					
Trauma	Shock	Sepsis	Fluid status	Renal	

SUMMARY

		POCUS USES		
Trauma	Shock	Sepsis	Fluid status	Renal
FoCUS	Lung	Aorta	Bladder	Ocular
OB	SSTI	Bones	Joints	Testicular
SBO	Gallbladder	Appendicitis	Vascular Access	AKI
Foreign body	Cardiac arrest	Procedural guidance	Nerve block	DVT

QUESTIONS AND DISCUSSION Breunig.Michael@mayo.edu

Heart

Lungs

Shock

Kidneys

