

INTRODUCTION TO POINT-OF-CARE ULTRASOUND MIKE BREUNIG, PA-C

AAPA 2022 Indianapolis, IN

©2021 Mayo Foundation for Medical Education and Research | slide-1

DISCLOSURES

None

LEARNING OBJECTIVE

- Explain the basics of ultrasound physics and orientation.
- Summarize scope, indications, and evidence for Point-of-Care Ultrasound (POCUS) of the heart, lungs, peripheral vasculature, and soft tissues.
- Interpret POCUS images of the heart, lungs, peripheral vasculature, and soft tissues.
- Contrast evidence for standard of care with POCUS.

POCUS PHYSICS

- Depth
- Focal Zone

POCUS PHYSICS

- Acoustic Impedence
- Gray Scale
 - Black (anechoic) = Fluid or loss of echos
 - White (hyperechoic) = Strong reflectors (pleura, bone, fascia, etc).
 - Gray (isoechoic) = organs, tissues.

POCUS PHYSICS

GAIN

• Amplitude of the ultrasound waves.

Down Gain

Up Gain

INDICATOR MARKERS

INDICATOR MARKERS

Patient's Left

SLIDE CONVENTION

- A 78 year-old gentleman presents to the emergency department for evaluation shortness of breath, progressing over 3 – 4 days.
- He endorses cough, but denies sputum production. Denies fever or rigors. Denies hemoptysis.

- Past Medical / Surgical History:
 - COPD
 - Hypertension
 - Obesity
- Social History:
 - 60 pack year history of smoking
- Family History:
 - Father Lung cancer

Vital Signs:

- HR 92
- BP 156/52
- SpO2 84%
- RR 28
- T 37.0 Celsius

Exam:

- Mild distress
- Body habitus impairs JVD
- Normal S1 and S2.
- Diffuse wheezing throughout all lung fields
- 2+ pitting "chronic" edema

Lactate 1.7

FOCUSED CARDIAC ULTRASOUND (FoCUS)

- Scope:
 - LV size / systolic function
 - RV size / systolic function
 - IVC size and respiratory variation
 - Pericardial effusions / Cardiac Tamponade
- Indications:
 - Hypotension
 - Respiratory Failure
 - Intravascular volume assessment

FoCUS

5 Cardinal Views of the Heart

- Parasternal Long Axis (PLAX)
- Parasternal Short Axis (PSAX)
- Apical 4 Chamber (A4C)
- Subcostal 4 Chamber (S4C)
- Inferior Vena Cava (IVC)

F₀**CUS**

5 Cardinal Views of the Heart

- Parasternal Long Axis (PLAX)
- Parasternal Short Axis (PSAX)
- Apical 4 Chamber (A4C)
- Subcostal 4 Chamber (S4C)
- Inferior Vena Cava (IVC)

FoCUS

- LV Systolic Function:
- Hyperdynamic
- Normal
- Reduced / Severely Reduced

FoCUS PLAX

1. Endocardial Excursion

2. Myocardial Thickening

3. E Point Septal Separation

FoCUS PSAX

FoCUS

F₀**CUS**

- Surrogate marker for RA Pressure / Central Venous Pressure
- JVP ≈ IVC

IVC Findings	CVP (mm Hg)	Clinical Correlation
IVC < 2.1 cm, with > 50% collapse	3 (range 0 – 5)	Probable hypovolemia
IVC < 2.1 cm, with < 50% collapse IVC > 2.1 cm, with > 50% collapse	8 (range 5 – 10)	
IVC < 2.1, with < 50% collapse	15 (range 10 – 20)	Possible hypervolemia

Soni NJ, Arntfiled R, Kory P (2015). Point of Care Ultrasound, Oxford: Elsevier Saunders.

CASE 1 PLAX

CASE 1 PSAX

LUNG ULTRASOUND

- Scope:
 - Pulmonary Edema
 - Pneumonia (viral and bacterial)
 - Pleural effusions (simple vs complex)
 - Pneumothorax
- Indications:
 - Dyspnea
 - Hypoxia
 - Respiratory Failure
 - Intravascular volume assessment

LUNG ULTRASOUND A LINES + LUNG SLIDING

LUNG ULTRASOUND ABSENT LUNG SLIDING

LUNG ULTRASOUND B LINES

LUNG ULTRASOUND CONSOLIDATION

LUNG ULTRASOUND CONSOLIDATION

LUNG ULTRASOUND PLEURAL EFFUSION

CASE 1 RIGHT APEX

CASE 1 LEFT APEX

CASE 1 RIGHT BASE

CASE 1 LEFT BASE

• Diagnosed with acute decompensated heart failure with reduced ejection fraction

- NOT COPD
- Diuretics started, steroids/antibiotics stopped
- Echo
- HFrEF meds started
- Cardiology follow up

CHF

33.5% of patients with CHF exacerbation presenting to the ED with dyspnea are missed.¹

"Bedside lung US and echocardiography appear to the most useful test for affirming the presence of AHF."²

Collins SP, Lindsell CJ, Peacock WF, Eckert DC, Askew J, Storrow AB. Clinical Characteristics of emergency depatrement heart failure patients initially diagnosed as non-heart failure. BMC Emergency Medicine. 2006;6:11. doi:10.1186/1471-227X-6-11.

Martindale JL, Wakai A, Collins SP, et al. Diagnosing Acute Heart Failure in the Emergency Department: A Systematic Review and Meta-analysis. Acad Emerg Med. 2016 Mar;23(3):223-42. doi: 10.1111/acem.12878. Epub 2016 Feb 13.

	Chest X-ray		Lung Ultrasound	
	Sensitivity	Specificity	Sensitivity	Specificity
Pulmonary Edema	56.9%	89.2%	85.3 – 94.1%	92%

- Alrajab S, Yousef AM, Akkus N, Caldito G. Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of theliterature and meta-analysis. Critical Care 2013, 17:R208.
- Martindale JL, Wakai A, Collins SP, et al. Diagnosing Acute Heart Failure in the Emergency Department: A Systematic Review and Meta-analysis. Acad Emerg Med. 2016 Mar;23(3):223-42. doi: 10.1111/acem.12878. Epub 2016 Feb 13.
- Al Deeb M, Barbic S, Featherstone R, Dankoff J, Barbic D. Point-of-Care ultrasonography for the diagnosis of acute cardiogenic pulmonary edema in patients presenting with acute dyspnea: a systematic review and meta-analysis. Acad Emerg Med . 2014 Aug;21(8):843-52. doi: 10.1111/acem.12435

	Chest X-ray		Lung Ultrasound	
	Sensitivity	Specificity	Sensitivity	Specificity
Pulmonary Edema	56.9%	89.2%	85.3 – 94.1%	92%
Pneumonia	38 – 64%	93%	85 – 96%	93 – 96%
Pneumothorax	39.8 – 50.2%	99%	90.9%	99%
Pleural Effusion	51%	91%	94%	98%
COVID-19	51.9%		88.9%	

- Alrajab S, Yousef AM, Akkus N, Caldito G. Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of theliterature and meta-analysis. Critical Care 2013, 17:R208.
- Martindale JL, Wakai A, Collins SP, et al. Diagnosing Acute Heart Failure in the Emergency Department: A Systematic Review and Meta-analysis. Acad Emerg Med. 2016 Mar;23(3):223-42. doi: 10.1111/acem.12878. Epub 2016 Feb 13.
- Al Deeb M, Barbic S, Featherstone R, Dankoff J, Barbic D. Point-of-Care ultrasonography for the diagnosis of acute cardiogenic pulmonary edema in patients presenting with acute dyspnea: a systematic review and meta-analysis. Acad Emerg Med . 2014 Aug;21(8):843-52. doi: 10.1111/acem.12435

- A 72-year-old female presents to the emergency department for evaluation of right lower extremity redness and swelling.
- She endorses:
 - Generalized malaise
 - Flushing
 - Dyspnea and dyspnea on exertion
 - Bilateral lower extremity swelling, right greater than left.

- Past Medical History:
 - CAD
 - Hypertension
 - Hyperlipidemia
 - Diabetes mellitus type II.
 - HFpEF
- Past Social History:
 - Smoker (50 pack years).
 - Daily alcohol use.

Vital Signs:

- HR 98
- BP 105/52
- SpO2 90%
- RR 24
- T 37.6 Celsius

Exam:

- Mental A&O x 3. CAM negative
- Heart Regular rhythm and rate.
- Lungs CTAB
- Lower extremities –

2+ pitting edema noted on the left3+ pitting edema noted on the right.

Erythema and tenderness from the right thigh distally to just below the knee.

No noted fluctuance

DVT POCUS

Scope
DVT Compressive Ultrasonography

Indications

- Swelling
- Redness
- Pain

DVT POCUS

• 5 Point Exam

Common Femoral Vein – Greater saphenous vein anastomosis

Bifurcation of the Common Femoral Vein into the superficial and deep femoral veins

DVT POCUS – NORMAL

DVT POCUS – DVT

DVT POCUS

• DVT

- Sensitivity: 96.1%
- Specificity: 96.8%
- Multi-organ (Heart, Lung, DVT) POCUS for PE
 - Sensitivity: 90 92%
 - Specificity: 64 86.2%

- Pomero F. Dentali F, Borretta V, Bonzini M, Melchio, Douketis, JD, Fenoglio. Accuracy of emergency physician-performed ultrasonography in the diagnosis o deep-vein thrombosis: a systematic review, meta-analysis. Thromb Haemost 2013; 109(01): 137-145.
- Nazerian P, Vanni S, Volpicelli G, et al. Accuracy of point-ofcare multiorgan ultrasonography for the diagnosis of pulmonary embolism. *Chest.* 2014;145(5):950-957.
- Dwyer DJ, Grunwal Z. Increased sensitivity of Focused Cardiac Ultrasound for Pulmonary Emobolism in Emergency Department Patients with Abnormal Vital Signs. Academic Emergency Medicine. 2019; 26(11):1211-1220

©2021 Mayo Foundation for Medical Education and Research | slide-56

SOFT TISSUE POCUS

- Scope
 - Skin and Soft Tissue Infection (SSTI)
 - Foreign body identification
- Indications
 - Swelling
 - Redness
 - Pain

Cellulitis vs Abscess

SOFT TISSUE POCUS – NORMAL

SOFT TISSUE POCUS – COBBLESTONING

SOFT TISSUE POCUS – ABSCESS

SOFT TISSUE POCUS

Cellulitis vs Abscess

	Sensitivity	Specificity
Physical Exam	75 – 95%	60 – 84%
POCUS	95.5 – 97%	80.3 - 83%

- Changes management (up to 50% of patients)
- Reduces treatment failure rates (17% to 3.7%)
- Shorter ED Length of stay.

- Barbic D, Chenkin J, Cho DD, et al. In patients presenting to the emergency department with skin and soft tissue infections what is the diagnostic accuracy of point-of-care ultrasonography for the diagnosis of abscess compared to the current standard of care? A systematic review and meta-analysis. *BMJ Open*. 2017;7(1):e013688.
- Subramaniam S, Bober J, Chao J, Zehtabchi S. Point-of-care ultrasound for diagnosis of abscess in skin and soft tissue infections. Acad Emerg Med. 2016;23(11):1298-1306.
 Tayou VS, Hoaro N, Norton H, Tamograviki CA, Tayo affort dept tingue ultrasound an tianalysis of the standard statement of the stat
- Tayal VS, Hasan N, Norton HJ, Tomaszewski CA. The effect of soft-tissue ultrasound on the management of cellulitis in the emergency department. Acad Emerg Med. 2006;13(4):384-388
- Gaspari RJ, Sanseverino A, Gleeson T. Abscess incision and drainage with or without ultrasonography: a randomized controlled trial. Ann Emerg Med. 2019;73(1):1-7
 ©2021 Mayo Foundation for Medical Education and Research | slide-61

SOFT TISSUE POCUS

Necrotizing Fasciitis

	Sensitivity	Specificity
POCUS	88.2%	93.3%

- Caveat
 - Study: Single center (Taiwan), 62 patients, abnormally high rate of nec fasc (27.4% of patients) → limits generalizability.
- Practical Use:
 - Does not replace standard of care
 - But... if you see air in the soft tissues, think necrotizing fasciitis

Yen ZS, Wang HP, Ma HM, et al. Ultrasonographic screening of clinically-suspected necrotizing fasciitis. *Acad Emerg Med.* 2002;9(12):1448-1451.

POCUS USES					
FOCUS	Lung	DVT	Cellulitis	Abscess	

SUMMARY

POCUS USES				
FOCUS	Lung	DVT	Cellulitis	Abscess
Aorta	Bladder	Renal	OB	Ocular
SBO	Gallbladder	Appendicitis	Vascular Access	Testicular
AKI	Shock	Volume status	Trauma	MSK
Sepsis	Foreign body	Cardiac arrest	Procedural guidance	Nerve block

POCUS IN CRITICAL ILLNESS

Indiana Convention Center, 120-124 10:30 – 11:30

QUESTIONS AND DISCUSSION

Breunig.Michael@mayo.edu

Heart

Soft Tissue

