

Disclosures:

I have no relevant relationships with ineligible companies to disclose within the past 24 months.

2

Objectives

- Why do we care about ATN
- Understand that prerenal and ATN are on a continuum
- Identify the major causes of ATN
- Distinguishing between prerenal and ATN with objective data
- Treatment of ATN and when dialysis is indicated

Question:

- 70 year old gentleman with normal renal function at baseline (Cr 1.0) presents to the hospital with Cr at 5.8.
- Given what you know about the most common cause of AKI in the inpatient setting, what is the most likely cause of his AKI without more information?

A) Prerenal

- B) Acute Tubular Necrosis (ATN)
- C) Urinary tract obstruction
- D) Glomerulonephritis or vasculitis
- E) Acute interstitial nephritis
- F) Atheroembolic disease

4

Why care about ATN?

- ▶ Approx 65-75% of cases of AKI in the hospital are either pre-renal or ATN
- Frequent causes of AKI
- ATN- 45%
- Prerenal- 21%
- Acute on chronic renal failure- 13% (most due to ATN or prerenal disease)
- Urinary tract obstruction- 10%
- Glomerulonephritis or vasculitis- 4%
- Acute interstitial nephritis- 2%
- Atheroemboli- 1%

5

QUESTION:

Can someone have both pre-renal and ATN at the same time?A) Yes

B) No

Acute Tubular Necrosis (ATN) definition

- Sudden decline in kidney function resulting from ischemic or toxic-related damage to the renal tubular epithelium
- Histologic Changes: Necrosis, with denuding of the epithelium and occlusion of the tubular lumen by casts and cell debris. Not universal.

10

Ischemic ATN

Post-operative patients at increased risk for ATN

3 surgical procedures that has highest risk for ATN

- 1) Abdominal aortic aneurysm surgery
- 2) Surgery to correct obstructive jaundice

3) Cardiac surgery, particularly coronary artery bypass graft (CABG) with valve surgery.

13

Ischemic ATN

LOCALIZED TO RENAL VASCULATURE

- Bilateral renal artery stenosis
- Unilateral stenosis in solitary functioning kidney- made worse with impairment of renal autoregulation (ie. ACEI or ARB)

14

Question

Most causes of ATN are due to one insult:

A) True

B) False

Ischemic ATN

 Nearly two-thirds of patients who develop ATN have been exposed to more than one insult.

16

Question

Overt hypotension (ie SBP<110mmHg) must be observed for ischemic ATN to happen?

A) True

B) False

Nephrotoxic ATN

- Kidneys are vulnerable to toxicity due to high blood flow, and they are the major elimination/ metabolizing route of many of these elements
- Endogenous Toxins
- Exogenous Toxins

22

Nephrotoxic ATN: Endogenous Toxins

Rhabdomvolvsis- clinical syndrome associated with muscle necrosis and release of intracellular contents into the extracellular space

- <u>Physical Injury-</u> trauma, crush injuries, immobilization
- Muscle-Fiber Exhaustion- Excessive exercise, Seizures, Heat Stroke
- <u>Medications/Drugs-SSRIs</u>, Statins, Fibrates, Amphetamines, Cocaine, Alcohol

Toxin: Myoglobin

- (direct tubular toxin)
- Blood tests:
- Elevated creatine kinase (CK).

23

Nephrotoxic ATN: Endogenous Toxins

<u>Hemoglobinuria</u>. Free circulating hemoglobin occurs in the setting of intravascular hemolysis

- <u>Mechanical-</u>prosthetic valves, microangiopathic hemolytic anemia, extracorporeal circulation
- Immunologic- transfusion reaction
- <u>Genetic</u>- G6PD deficiency

Toxin: Hemoglobin

Nephrotoxic ATN: Endogenous Toxins

Rhabdo and hemolysis causes:			
1 (1abuo and 11c11101y313 cau3c3.	UA. MACROSCOPIC		
	Specimen	CLEAN CATCH	
Pigment nephropathy	Color	Yellow	
rightent hepthopathy	Clarity	Hazy	1
	Specific Gravity	1.027	
	Glucose	Negative	
	Ketone	Negative	
	Blood	1+	1
DV. LIA with cignificant positivity for home	pH	5.0	
DX: UA with significant positivity for heme	Protein	Negative	
	Nitrite	Negative	
protoin but no DBCo coon on	Leuk esterase	rvegative	
protein but no RBCs seen on	UA, MICROSCOPIC		
•	RBC, urine	0-3	
	WBC, urine	0-2	
microscopy.	Squamous cells		
	Mucous threads	Rare	
	Bacteria Urine comment	No significant	
Treatment is similar for both rhabdomyolys	sis and		
hemoglobinuria			
Early aggressive fluid repletion			
is the most important factor.			

25

Nephrotoxic ATN: Endogenous Toxins

Tumor lysis syndrome

- Results from release of a large amount of intracellular contents into the ECF following massive necrosis of tumor cells.
 - Elevated serum potassium, phosphate and uric acid
- AKI due to uric acid or calcium-phosphate crystal precipitation within the renal tubules

RX: IVF to induce high urine flows

- Allopurinol inhibit formation of uric acid
- Rasburicase increase breakdown of uric acid to allantonin
- Sodium bicarb for uric acid level >12 mg/dl

26

Nephrotoxic ATN: Endogenous Toxins

Others

Multiple Myeloma-Serum free light chains

Oxalate

Genetic, gastric bypass surgery and other causes of malabsorption (pancreatitis, Crohn's disease) which causes increased gut absorption of oxalate from dietary sources

Nephrotoxic ATN: Exogenous Toxins

Antibiotics

Aminoglycosides- low therapeutic dose and single daily dose

Amphotericin B

Antiviral agents- acyclovir, foscarnet

Vancomycin

Chemotherapy- Cisplatin, Ifosfamide, Methotrexate

Calcineurin Inhibitors-Cyclosporin, Tacrolimus

MISC: Radiocontrast media, NSAIDs, Oral phosphate bowel preparations

28

Nephrotoxic ATN: Exogenous Toxins

IV Contrast

Big fus about nothing?

29

Question: What is the most likely cause of his AKI?

- 70 year old gentleman with h/o CKD (Cr baseline ~2), CHF, IDDM2, HTN, HLD who presented with syncopal event on toilet and melena.
- On presentation Cr was 5.8. BUN 132. Hgb 6.8, down from 8.9, 2 weeks ago. At home he was also on Lisinopril and Lasix for CHF. UA bland without hematuria, proteinuria or pyuria. Renal ultrasound was without hydronephrosis.
- Vitals: Afebrile. BP 100s/60s. HR 120s. RR 25. RA
- Physical exam: NAD. EENT: Dry mucous membranes. Cardiac: Sinus Tachycardia. No m/r/g. Pulm: CTAB. Abdomen: BS active. Soft. Non-tender. Extremities: Cool, no edema. Skin: Decreased skin turgor.

A) Prerenal

- B) Acute Tubular Necrosis (ATN)
- C) Urinary tract obstruction
- D) Glomerulonephritis or vasculitis
- E) Acute interstitial nephritis
- F) Atheroemboli

31

Prerenal

- Acute Tubular Necrosis (ATN)
- Urinary tract obstruction- No hydro on renal ultrasound
- Glomerulonephritis or vasculitis- Unlikely without hematuria and proteinuria
- Acute interstitial nephritis- Abx can cause but less likely without pyuria.
- > Atheroemboli- usually common after cardiac procedures

32

Question

What is the gold standard for distinction between pre-renal disease secondary to volume depletion and ischemic or nephrotoxic ATN?

- A) FENa or FEUrea
- B) BUN/Cr ratio
- C) Fluid repletion
- D) UA or urine microscopy

Prerenal vs ATN: Fractional excretion of sodium (FENa) and urine sodium concentration

 $\underline{\mbox{Definition:}}$ The fraction of filtered sodium that is excreted. Prerenal: <1%

ATN: >2%

37

Question:

- 70 year old gentleman with h/o CKD (Cr baseline ~2), CHF, IDDM2, HTN, HLD who presented with syncopal event on toilet and melena.
- On presentation Cr was 5.8. BUN 132. Hgb 6.8, down from 8.9, 2 weeks ago. At home he was also on Lisinopril and Lasix for CHF. UA bland without hematuria, proteinuria or pyuria. Renal ultrasound was without hydronephrosis.

His FENa was 2%, does this mean he has ATN?

A) Yes

B) No

38

FENa will be elevated with diuretic use (physiology of

diuretics is to excrete sodium in the urine).

Limitations of FENa:

- Diuretics affect FENa. Use fractional excretion of urea (FEUrea) instead.
 - FEUrea <35%= Prerenal
 - FEUrea >50%= ATN

Other useful tests:

- Blood urea nitrogen/serum Cr ratio:
 - Prerenal: Elevated at >20:1
 - ATN: Normal at 10 to 15:1
- Urine osmolality:
 - Prerenal: usually > 500 mosmol/kg
- ATN: usually < 350 mosmol/kg
- Urine volume:
 - Prerenal: Low (limit fluid loss)
 - ATN: Varies

40

C) D5W with 3amps of bicarb

Sodium, Ser/Plas	134 _	Sodium, Ser/Plas	136 *
Potassium, Ser/Plas	6.2 * c*	Potassium, Ser/Plas	6.2 * c*
Chloride, Ser/Plas	105	Chloride, Ser/Plas	108 *
CO2, Ser/Plas	17 -	CO2, Ser/Plas	14 * 🖕
Urea Nitrogen, Ser/	132 *	Urea Nitrogen, Ser/	>150 * *
Creatinine, Ser/Plas	5.79 * 🔺	Creatinine, Ser/Plas	5.85 * *
eGFR	9* 🚽	eGFR	
eGFR (African Amer	10 * 🚽	eGFR (African Amer	
Fasting	See Comment *	Fasting	See Comment *
Glucose, Ser/Plas	195 * *	Glucose, Ser/Plas	314 * *
Anion Gap	12	Anion Gap	14 *
Calcium, Ser/Plas	7.8 🚽	Calcium, Ser/Plas	7.9 * -
	nd resolving GIE	3/BRBPR. Non Iq: CTAB. Abd:	0

Acidosis	Sodium, Ser/Plas	136 *
Electrolyte Disturbances	Potassium, Ser/Plas	6.2 * c ≉
	Chloride, Ser/Plas	108 *
Intoxication	CO2, Ser/Plas	14 * 🖕
Overload	Urea Nitrogen, Ser/	>150 * 🔺
	Creatinine, Ser/Plas	5.85 * 🔶
Uremia	eGFR	
	eGFR (African Amer	and the second second
	Fasting	See Comment *
	Glucose, Ser/Plas	314 * 🔺
	Anion Gap	14 *
	Calcium, Ser/Plas	7.9 * 🖕

47

Uremia

- Absolute indications for dialysis
- Overt uremic symptoms such as encephalopathy, pericarditis, uremic bleeding diathesis
- A precise correlation does not exist between the BUN level and the onset of uremic symptoms
 - Although the longer the duration and greater the severity of azotemia, the more likely that overt symptoms will develop

Takeaways

- ATN is the most common cause of AKI in the hospital setting
- The three major causes of ATN are: Ischemic, Septic and nephrotoxic
- Fluid repletion is the best way to distinguish between prerenal and ATN
- The treatment of ATN is supportive care
- There is no benefit to early dialysis
- > You are awesome! Thank you for listening

49

50

Sources

- ▶ Brenner, Barry M, et al. *Brenner and Rector's The Kidney, 9th edition.* Elsevier Saunders, 2012, Pages 1044-1088.
- Gilbert, Scott J, et al. National Kidney Foundation's Primer on Kidney Disease, 7th edition. 2017.
- "Etiology and diagnosis of prerenal disease and acute tubular necrosis in acute kidney injury." UptoDate, 01, April 2016.
- "Pathogenesis and etiology of ischemic acute tubular necrosis." UptoDate, 10, May 2017.
- Aburelo, J. Gary MD. "Normotensive Ischemic Acute Renal Failure." *NEJM*, 2007, pg 797-804.
- Rahman, Mahboob MD, et al. "Acute Kidney Injury: A Guide to Diagnosis and Management." AAFP, 2012. pg 631-639.