Making Special Accommodations for Special Needs Populations: Evidence-Based Tips and Tricks to Ease the Evaluation of Special Needs Patients

Dr. Thomas Meersman DHSc, MMSc, PA-C Assistant Professor of Physician Assistant Studies Program Director North Central College MSPAS program

AAPA We Are Family (Medicine) Conference

Austin, TX - 2/19/2022

Disclosure

I have no relevant relationships with ineligible companies to disclose within the past 24 months.

Objectives

- At the conclusion of this session, participants should be able to:
 - Categorize the unique sensory needs of children with autism spectrum disorder (ASD) and developmental disorders (DD).
 - Identify the responses that children with ASD/DD experience during physical exams, highlighting challenges related to anxiety and specific phobias.
 - Apply behavioral techniques to assist with the use of instruments/procedures that are often problematic in the examination of children with ASD/DD.
 - Describe the common components of coping kits and demonstrate the proper use of these elements during the examination of children with ASD/DD.
 - Discuss current research on the examination of children with ASD/DD, delineating components that may prove useful to clinicians and parents/caregivers.

Pre-test Question 1

- All of the following represent established approaches to facilitate the physical examination of a resistant/agitated patient with ASD <u>except</u>:
 - A. Use of distractive tools such as those found in a coping kit.
 - B. Using specific and detailed written and verbal instructions to outline the entire procedure at all once.
 - C. Modifying the physical environment to tailor the stimuli experience (i.e.- dimming lights, providing head phones, and chewy tubes).
 - D. Providing visual cues of the procedure/exam using visual models such as dolls or stuffed animals prior to performing the procedure.

Pre-test Question 2

- All of the following are methods of alternative communication that you may see commonly used by children with ASD to assist their communication and decrease anxiety/fear with health care providers during their exam <u>EXCEPT</u>:
 - A. Speech Generation Devices (SGD)
 - B. Picture Exchange (PE)
 - C. Functional Magnetic Resonance Imaging (fMRI) enabled speech device
 - D. Micro Switches

Pre-test Question 3

- Based on research performed on the physical examination of children with ASD, which of the following techniques is NOT a preferred technique for the routine behavioral management of fear/anxiety related to physical exam:
 - A. Intermittent graduated exposure to fearful stimuli
 - B. Tell-Show-Feel-Do (T-S-F-D)
 - C. Differential reinforcement of other behavior (DRO)
 - D. General sedation

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

The Reality of Medical Care in Special Needs Populations

- Children with ASD and developmental disorders (DD)
 - Often require more frequent medical care
 - Experience more difficulties during the history and physical examination than neurotypical peers (Cuvo et al., 2010).

The Reality of Medical Care in Special Needs Populations

- % of primary health care providers- self-rated their ability to care for someone with ASD as (Wexler, Holmes, Shore, & Rollins, 2015):
 - Poor
 - Fail

The Fallout – History Taking and Physical Exams in ASD

(Cuvo, Readan, Ackerlund, Huckfeldt, & Kelly, 2010).

- Health care providers often fail to obtain a detailed medical history relying on:
 - Parents/caregivers
 - Incomplete preexisting medical records
- Essential health care procedures in this population:
 - Physical restraint
 - Sedation
 - Forgo procedures due to noncompliance

Importance of Performing Proper Exams

Negative health care experiences can adversely affect children with ASD/DDs perceptions of medical care for future visits

Targeted behavioral support can facilitate the examination of this unique patient population, preventing child:

- Stress
- Adverse events
- Future aversion to medical care (Drake, Johnson, Stoneck, Martinez, & Massey, 2012, p. 215)

Clinical Scenario

6-year-old male patient, named Jack, presents to your outpatient clinic with chief complaint of "he feels warm" for the past 2 days per the parent. You observe as the patient is wheeled into his room by stroller/community access device that Jack is grunting, repeating the words "all done", watching a video on a tablet device, and constantly sucking on his finger. He appears agitated, makes poor eye contact with the nurse, and responds in a limited manner using "yes/no" answers to questions primarily with laminated cards his parent brought in for the examination. Your clinician coworker rolls their eyes, looks to you and says, "Well, I guess Jack is back again."

Clinical Scenario

- Your best course of action for Jack is:
 - A. Run and hide in the bathroom.
 - B. Take an early lunch.
 - C. Spend time catching up on charts and hope your colleagues see Jack instead.
 - D. Review his medical history and enter the room, discussing the history with the parent but never examining Jack due to "combativeness" and "non-compliance" during the clinical interaction.
 - E. None of the above.

Definitions

- Developmental disabilities are defined as:
 - "a diverse group of severe chronic conditions that are due to mental and/or physical impairments that affect language, mobility, learning, self-help, and independent living... [that] may include autism spectrum disorder (ASD)" (Drake, Johnson, Stoneck, Martinez, & Massey, 2012, p. 215).
 - Often not a single condition but various causes show a set of symptoms (Rah, Hong, yoon, 2021)
 - High genetic causality
 - Difficulties in multiple domains (Rah, Hong, yoon, 2021; Zablotsky, Black, & Blumberg, 2017):

More Important Terminology-Developmental Disorders/ Special Needs Population

- **Developmental Delay** failure to meet typical developmental milestones within typical time range.
- **Developmental Disability** medical condition impairing development such as ASD, ADHD, intellectual disability
- Intellectual Disability- specific form of developmental disability, originating prior to age 18, limiting intellectual functioning.
 - May include a specific genetic disability, autism spectrum disorder, or global developmental delay (Kaiser & Roberts, 2013).

Definitions (Autism Speaks, 2018)

- Autism Spectrum Disorder (ASD)
- DSM-5 Criteria Symptoms
 - Persistent deficits in social communication/interaction
 - Deficits in:
 - Social/emotional reciprocity
 - Nonverbal communicative behaviors
 - Developing, maintaining, understanding relationships
 - Restricted, repetitive patterns of behavior, interest, activities (2+)
 - Stereotyped/repetitive movements/speech/use of objects
 - Insistence on sameness, routines, patterns
 - Restricted, fixated interests
 - Hyper/hyporeactivity to sensory inputs
 - Symptoms are not better explained by intellectual disability or developmental delay

Demographics - ASD

- Prevalence of ASD
 - 2021 CDC estimates:
 - 1 in 44 US Children
 - 1 in 27 Boys
 - 1 in 116 Girls
 - Boys > 4 x more likely to have ASD than girls
 - Most diagnosed after age 4
 - Reliable diagnosis as early as 2-yearsold

Autism Statistics and Facts. (2021). Retrieved from https://www.autismspeaks.org/autism-statistics-asd

Demographics - ASD (Facts and Figures. (2018).

Retrieved from https://www.autismspeaks.org/autism-facts-andfigures)

• Challenges:

- Nearly half all children wander/bolt from safety
- High rates of self injurious behavior
 - Head banging, arm biting, skin scratching most common
- Intellectual Disability and ASD
 - 31% also have ID
 - 25% borderline Intelligence Quotient
 - <u>44% average-above average IQ</u>
- Medical expenditures average 4.1-6.2 times higher
- Passage of autism insurance legislation, including mandates requiring some level of coverage, in <u>all 50 states</u> and Washington, D.C. (Bernard, 2019).
 - Treatment for autism a medical necessity, including ABA in some states.
 - Increased access to medical care/treatment

Demographics of DDs

Prevalence of DDs in United States (Zablotsky, Black, & Blumberg, 2017)

- Developmental Disability 2014-2016 in CDC Sample
 - Children aged 3-17 Increase from 5.79% to 6.99%
 - No relative significant increase in ASD or Intellectual Disability(ID)
 - DD- Boys (8.15%) > Girls (4.29%)
 - ASD Boys (3.63%) > Girls (1.25%)

• Adapted from Zablotsky et al., 2017

Prevalence of Developmental Disability in Children aged 3-17 2014-2016

Autism Spectrum Dissorder Intellectual Disability Other Developmental Delapevelopmental Disability

Prevalence of Developmental Disorder Worldwide (Rah, Hong, and Yoon, 2020)

- United Kingdom 4.8% school age children in state-funded schools (Emerson, 2012)
- Taiwan Developmental Delay Up from 0.16 to 3.25% over 12 year period children aged 0-6-years-old

Incidence in all Causes of DDs (% increase)					
<u>ASD</u>	<u>Developmental</u> <u>Delay</u>	<u>Language</u> <u>Disorders</u>	<u>Boys vs Girls</u> <u>(Gap)</u>		
13.7%	817.6%	30.7%	31.4% (Up from 19.1%)		

• Increases in DDs believed to be independent of changes in diagnostic criteria, research methods, or diagnostic awareness (Rah, Hong, and Yoon, 2020).

Important Terminology-Developmental Disorders(Harris, 2013)

- Please avoid:
 - Mental Retardation(MR)/"Retarded"
 - Adopted by medical societies in 1961
 - Replaced terms feeblemindedness, idiocy, and mental subnormality.
 - All are now considered pejorative
- APA revised preferred terminology in 2013 with DSM-5 and ICD-11.
- In US, federal statute has replaced MR with Intellectual Disability (ID).

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

Anatomy and Pathophysiology of Autism (Lathe, 2006)

MRI

Abnormal size of limbic structures
Fewer hippocampal dendrites, abnormal hippocampal volume
Higher neuronal density in amygdala, abnormal volume

Histology

•Prefrontal and temporal lobe cell columns increased in number, but smaller and fewer neurons per column

fMRI

• Examine blood flow and energy utilization

•Reduced blood flow to temporal lobes

•Asperger – abnormal functional integration amygdala and parahippocampal gyrus

Reduced neuronal metabolite in hipocampus/amygdala and cerebellum

•Indicates diminished metabolic activity in these areas

•Sign. Correlation between parent rated ASD severity and limbic neuronal density

SPECT

•Decreased blood flow to left temporal lobe

PET

•Decreased blood flow to temporal lobes

Pathophysiology of Autism – ASD Phenotype (Lathe, 2006)

- Memory
 - Hippocampal dependent memory affected in ASD
 - Repeat training can overcome hippocampal damage/lesions and also in ASD
 - Difficulty relearning "new rules"
- Anxiety/Stress
 - Associated with hippocampal function in ASD
- Desire for sameness
 - Decreased blood flow to right amygdala/hippocampus associated with obsessive desire for sameness
- Perception of facial emotions
 - Associated with limbic atrophy, facial recognition temporal lobe
- Social interaction
 - Amygdala lesions associated with impaired evaluation of social stimuli
- Language
 - Limbic lesions associated with speech/language impairment
- Stereotypical/repetitive behavior
 - Associated with hippocampal lesions
- Sensory Deficits
 - Temporal lobe/lymbic lesions associated with auditory agnosia ("hearing blindness")

Pathophysiology of Autism – ASD Phenotype (Lathe, 2006)

- Consensus:
 - Abnormalities in the medial temporal lobe, hippocampus, and amygdala
 - Cognitive, perceptual, social and language impairments of ASD
 - Cerebellar abnormalities
 - Impaired coordination/posture/loco motion

Sensory Experience of ASD

CGI Animated Shorts : "Listen" - by Alexander Bernard ... – YouTube – 2:41.

Bernard, A., & Fernandez, M.(2016, June 7). *Listen Senior Film*.[Video File]. Retrieved from <u>https://www.youtube.com/watch?v=ibylThIMErE</u>

DMV...

Sensory Experience of ASD

Sensory processing difficulties are universally present in children with ASD (Lathe, 2006)

- Hearing deficits in 8.6%
- Varying visual inpairments in 25%

Sensory difficulties correlated with maladaptive behaviors (Nieto, López, & Gandía, 2017)

• Key driver of parental stress

Sensory Experience of ASD

- Sensory disturbances may involve acoustic, visual, tactile, and pain stimuli (Lathe, 2006)
 - Heightened response
 - Reduced response
 - Less clear anatomical/physiological linkage than non-sensory ASD deficits

Hypersensitivity (over responsive)	Hyposensitivity (under responsive)	Impaired Sense	Accommodation in Clinic
	Poor response to visual cues	Vision	Pictures/items with high contrast
	Poor Balance/Coordinatio n	Proprioceptive/Vesti bular	Opportunities for rocking/swinging/w eighted vests or blankets
	Oral seeking	Tactile/oral	Chewabletubes
Spectrum of light		Visual	Room without fluorescent lamps
Loud Noises		Auditory/vestibular	Ear plugs/Headphones/ Close door
Sensitivity to touch		Tactile	Request permission prior to touching
Bright light		Visual	Dimmed lights/visor/sunglass es

Hypersensitivity (over responsive)	Hyposensitivity (under responsive)	Impaired Sense	Accommodatio n in Clinic
Withdrawing from soft touch		Nociceptive/Tac tile	Avoid rough stimuli
Avoidance of textures		Tactile	Avoid painful/rough stimuli
Smell		Gustatory	Avoid perfumes, colognes, or scented items
	Seek out strong tastes/odors	Gustatory	Flavored chewable tubes
	Unresponsive to loud noises	Vestibular/Audit ory	Noisy toys, play loud music, running commentary

(Brownlee, 2010; Fun and Function, 2018; Developmental Delay, 2014; Newman, 2008)

Big Picture Check

- Which of the following statements are TRUE regarding sensory stimuli that can trigger of sensory disturbances for children with ASD?
 - A. Hypersensitivity to stimuli is the most common general sensory trigger.
 - B. Hyposensitivity to stimuli is the most common general sensory trigger.
 - C. Sensory triggers are similar in this population to those of neurotypical peers.
 - D. BOTH hyposensitivity and hypersensitivity are common general sensory triggers

Language and Developmental Disability

- Basic Terms
 - <u>Speech</u> (Mulhern et al., 2017) ability to articulate needs or thoughts
 - <u>Vocalizations</u> (Mulhern et al., 2017) – act/process of producing voice sounds
 - <u>Receptive language</u> (Lim, 2011)
 - What the individual understands
 - Expressive language (Lim, 2011)
 - What is spoken/expressed by the individual

Language and ASD $_{(\text{Lim, 2011})}$

- Key consideration
 - *Lack of expressive language does not signify a lack of receptive language*.

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

Language and ASD

- "Inadequate" use of language key feature of ASD (Lim, 2011).
 - Early speech delay/regression
 - 1/3rd to ½ of individuals with ASD are unable to communicate at a level to express daily needs.
 - Non-verbal
 - 25-30% of children with ASD fail to acquire speech without direct intervention (Mulhern, Lydon, Healy, Mollaghan, Ramey, & Leoni, 2017).
Language and ASD

- Verbal ASD children display:
 - Unusual word choice
 - Echololia
 - Unresponsiveness to questions
 - Lack of drive to communicate
 - Absent "Give and take" of communication
 - Inability to understand body language, tone of voice, subtle language queues

Language and Developmental Disability

Significant speech deficits found in <u>62%</u> of severely intellectually disabled (Mulhern et al., 2017).

Significant decline in speech acquisition in individuals with DDs after age 5-years-old.

Language and Developmental Disability

- Similar to ASD challenges with speech acquisition affect quality of life
 - Decreased independence
 - Decreased social adaptive functioning
 - Struggles integrating with peers and more withdrawn
 - Development of speech one of most significant predictive factors of positive outcomes for:
 - Behavioral symptom severity
 - Improved socialization

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns continued
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

Alternative Communication Options

Objects of Reference

 Visual representation of the tasks asked of the individual (Goldbart et al., 2014).

Micro Switches (Cable, 2015; Lancioni, O'Reilly, & Basili, 2001)

- Applying tactile pressure to an electronic switch
 - Wobble
 - Pressure
 - Pull
 - Pedal type inputs (Lancioni, O'Reilly, & Basili, 2001)

Picture Exchange (PE) Ganz et al., 2014 Lancioni et al.,2001

YesNo \square \square

• PE techniques comparable effectiveness speech generation devices in children with comorbid ID (Ganz et al., 2014) Speech Generation/ Generating Devices (SGDs) (Hagan and Thompson, 2013)

- Advanced means of communication that uses touched symbols to trigger recorded messages.
- Mimic verbal speech
 - Speakers
 - Increase communication competence in children with ID
 - Studies also showing effectiveness in children with multiple disabilities and ASD
 - Increased rate, complexity, and length of speech in children with impaired speech (Luckins & Clarke, 2021).
 - Gains sustained and generalized, including verbal speech
 - Increased probability of listener response (Broadhead et al., 2020)

Speech Generation Devices (SGDs)

Sign Language (Vandereet et al., 2013)

- Impairments in fine and gross motor functioning may limit the use of sign language in children with ID (Vandereet et al., 2013)
 - ***Sign language may be an adjunct for communication, provided:
 - Baseline cognition is relatively high
 - Fine motor skills are advanced enough to allow hand manipulation to form signs consistently
 - Compared to other AAC forms of communication, manual sign language is poorly understood/responded to by individuals unfamiliar with the manual signs (Broadhead et al., 2020).

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

Anxiety (Gillis, Natof, Lockshin, & Romanczyk, 2009).

- Anxiety and fear associated with medical evaluation is increased in the pediatric ASD population.
 - Specific phobias affect
 - 44% of children with ASD
 - 5% of typically developing children (Gillis et al., 2009)
- Minimizing anxiety to medical instruments and procedures higher yield in ASD population (Gillis et al., 2009).

Mountain of Emotion

(Hudson, 2006)

Phobias in ASD

• Communication tools and distractive items may decrease anxiety/stress and assist the clinician with performing an exam (Drake et al., 2012).

Distraction Tools (Breslin & Liu, 2015; Drake et al., 2012)

- Examples:
 - Coping kits
 - Social stories/Written schedules
 - Sensory input activities
 - Other visual communication techniques
- Limit auditory and verbal instructions to short verbal commands

Distractive Items/Techniques

Coping Kits- Improved willingness to cooperate through an observed change in child behavior in 79% of cases (19/24). (Drake et al., 2012)	Otoscope light onto a child's hand, moving forward and back to display the lights scope (Narula-Isaac, 2005) •Repetition of this routine beneficial in ASD		
Chewable toy (Drake et al., 2012)	Light-up spinning fan toy (Drake et al., 2012)		
Bubble wand (Weltman, 2007).	Tablet/Smartphone		

Other Distractive Items in Coping Kit

- Sand
- Ear plugs / ear phones
- Visors/ hats
- Fidget toys
- Weighted vest / weighted blanket
- Soothing music
- Lava Tubes (bubbles/floating objects)

Big Picture Check

- Question: Besides communication, what are the other two main areas of focus for your physical examination of the ASD/DD child in this lecture?
 - A. Sedation
 - B. Restraints
 - C. Safety Concerns (anxiety/phobias)
 - D. Mobility Concerns

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety Concerns (Anxiety/Fear)
- Mobility concerns
- Research

Mobility/Examination

(Breslin & Liu, 2015).

Attire

- Logos on clinician clothing may be distracting/point of perseveration
- Child clothing preferences may be related to tactile input
 - Shirt tags
 - Loud clothing
- Substitute for different color/texture if distracting or child is tactile sensitive

Equipment

-Substitute for different color/texture if distracting or child is tactile sensitive

Rely on support personnel

Mobility/Examination

- DD (Palisano, Shimmell, Stewart, Lawless, Rosenbaum, & Russell, 2009)
 - Gross Motor Function Classification System
 - Level I Walks without limitations at school, outdoors, etc
 - Level II- Walks in most settings. Environment/setting may use wheelchair based on preference
 - Level III- Walks with handheld device (cane/crutches/walker) Wheelchair outdoors, environment.
 - Level IV- Wheeled mobility in most settings. Self mobility using powered mobility options. Adaptive seating, assisted transfer.
 - Level V Self mobility severely limited even with assisted technology. Physical assistance from 1-2 others for transfers.

So how do we ensure we are meeting children's needs and assessing their level of functioning?

ASD Needs Assessment

- Quick
- Easy
- Parent/caretaker facilitated
- Administered at the point of entry/triage for medical care
- Take into consideration communication, anxiety and mobility for each child

Initial Assessment (Hudson, 2006)

- Childs Name:
- Medical Diagnosis:
- Reason for medical visit:
- Excels in these skills:
- Activities in which the child enjoys:
- Activities the child avoids:
- Motivators:
- Stress triggers:
- Adaptations already in place:
- Communication system in place:
- Known Sensory issues:
- Special Diet/food allergies:
- Optional add ons:
 - Mobility Needs:
 - S.W.O.T

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety Concerns (Anxiety/Fear)
- Mobility concerns
- Research

Training Compliance with PE (Cuvo et al., 2010)

Applied Behavioral Analysis (ABA) Developed tailored procedures based on the reasons for noncompliance

10 component, 10-minute physical exam performed by PA

Participants watched 9-min DVD modelling successful exam

Dinosaur puppet narrated steps of exam praising good behavior

Close ups of medical equipment

Training Compliance with PE (Cuvo et al., 2010)

- Each exam/training session
 - Contact desensitization gradual exposure to non-preferred stimuli
 - Shaping address skill deficits
 - Differential reinforcement of other behavior (DRO) – use of preferred reinforcers
 - Escape extinction aversive stimuli present for at least 10 seconds

Training Compliance with PE (Cuvo et al., 2010)

- Results
- All participants eventually completed all 10 exam components
- Most problematic
 - exam components:
 - Lung
 - Mouth/throat
 - Nose
 - Ear

TEACCH (Orellana et al., 2014)

- Training approach
 - Interact with exam equipment/instruments and with dentist
 - Tell-Show-Feel-Do (T-S-F-D) For example...
 - Tell what's going to happen, Show what they will do, Feel instrument, Do the exam technique.
 - Visual pedagogy 20 step-by-step photos
 - A-V modeling live modeling videotaped and played back
 - Behavioral trials step through 10 component exam
 - Auto modeling photos of subjects modeling behavior used later in practice sessions
 - Results
 - Pre-test 73% of children and 67% adults showed <u>reluctant</u> behavior
 - Post-test- 81.6% of children and 100% of adults showed positive behavior

Exposurebased interventions in children with ASD (Gillis et al., 2009)

Population

- Mean age of 8.4 years
- Majority non-verbal (10/18)
- All students of specialized ASD school

Results:

- Repeated exposure to a clinical setting to fearful stimuli during a routine exam <u>decreased</u> fearrelated behaviors
 - 83% of participants (15/18)
 - 3 remaining participants still fearful
 - Still showed progress after 38, 42, and 62 visits
 - Did not complete protocols, but still made progress

More Tricks of the Trade (M. Bellatuono, personal communication, November 28, 2018)

Post-Test Question 1

- All of the following represent established approaches to facilitate the physical examination of a resistant/agitated patient with ASD <u>except</u>:
 - A. Use of distractive tools such as those found in a coping kit.
 - B. Using specific and detailed verbal and written instructions to outline the entire procedure all at once.
 - C. Modifying the physical environment to tailor the stimuli experience (i.e.- dimming lights, providing head phones, and chewy tubes).
 - D. Providing visual cues of the procedure/exam using visual models such as dolls or stuffed animals prior to performing the procedure.

Post-test Question 2

- All of the following are methods of alternative communication that you may see commonly used by children with ASD to assist their communication and decrease anxiety/fear with health care providers during their exam <u>EXCEPT</u>:
 - A. Speech Generation Devices (SGD)
 - B. Picture Exchange (PE)
 - C. Functional Magnetic Resonance Imaging (fMRI) enabled speech device
 - D. Micro Switches

Post-test Question 3

- Based on research performed on the physical examination of children with ASD/DD, which of the following techniques is NOT a preferred technique for the routine behavioral management of fear/anxiety related to physical exam:
 - A. Intermittent graduated exposure to fearful stimuli
 - B. Tell-Show-Feel-Do (T-S-F-D)
 - C. Differential reinforcement of other behavior (DRO)
 - D. General sedation

Clinical Scenario Revisited

- Jack, 6-year old
- Needs assessment completed
 - Sensory
 - Oral hyposensitivity/seeking
 - Light hypersensitivity
 - Communication
 - Non-verbal, uses visual communication
 - Mobility
 - Stroller/Community Access Device
 - Anxiety
 - Hates ENT exams

Putting it all together

- Accommodations made
 - Lights
 - Chewy tube
 - Examine in stroller
 - Specialized Techniques used
 - Custom First-Then Board
 - T-S-F-D
 - Repetition
 - Video after completion

Summary

- These are simple techniques
- Effective resources are inexpensive
- Donate your time (a.k.a.- hit the breaks)
- Identify and address sensory needs/ triggers-crucial to smooth outcomes. DON'T REINVENT THE WHEEL, ASK PARENTS!
- One child unnecessarily sedated/restrained/traumatized is one too many
- Small efforts make big differences in special needs
- Bail out your colleagues grab these charts- help these kiddos!

One last thought...

"I don't want to be autistic. But I am, so don't be mad. Be understanding." – Carly Fleischman

- Atkinson, R. (2013). Helping your child live with a developmental delay: A practical guide to the Dos and Don'ts. Stillwater, OK: New Forums Press.
- Autism Speaks (2021). Autism Statistics and Facts. Retrieved from https://www.autismspeaks.org/autism-statistics-asd
- Autism Speaks (2018). DSM-5 Criteria. Retrieved from https://www.autismspeaks.org/dsm-5criteria.
- Autism Speaks. (2018). Facts and Figures. Retrieved from https://www.autismspeaks.org/autismfacts-and-figures
- Autism Speaks (2018). Sensory Issues. Retrieved from https://www.autismspeaks.org/sensoryissues
- Benameur, K. (2018). Functional anatomy of our brains [Online Presentation]. Retrieved from www.coursera.com.
- Bernard, A., & Fernandez, M. [TheCGBros]. (2014, August 31). Listen [Video File]. Retrieved from https://www.youtube.com/watch?v=AI0TBfDZzU8
- Bernhard, B. (2019, October 1). Autism insurance coverage now required in all 50 states. *DisabilityScoop.com*. https://www.disabilityscoop.com/2019/10/01/autism-insurance-coverage-now-required-50-states/27223/
- Breslin, C. M., & Liu, T. (2015). Do you know what I'm saying? Strategies to assess motor skills for children with autism spectrum disorder. *The Journal of Physical Education, Recreation & Dance, 86*(1), 10-15. Retrieved from https://www.tandfonline.com/loi/ujrd20
- Brodhead, M. T., Brouwers, L. F., Sipila-Thomas, E. S., & Rispoli, M. J. (2020). A Comparison of Manual Sign and Speech Generating Devices in the Natural Environment. *Journal of Developmental & Physical Disabilities*, *32*(5), 785–800. https://doi.org/10.1007/s10882-019-09720-1
 - Brownlee, F., & Munro, L. (2010). Fuzzy Buzzy Groups for Children with Developmental andSensory Processing Difficulties: A Step-by-Step Resource. London: Jessica Kingsley Publishers. Retrieved from http://p.atsu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=e90xww&AN=299383&site=eds-live
- Cable, A. (2015). Communication disorders: School-aged children with intellectual disability. *CINAHL Rehabilitation Guide*. https://www.ebscohost.com/nursing/products/cinahldatabases/cinahl-complete.

- CDC increases estimate of autism's prevalence by 15%, to 1 in 59 children (2018 April 26). Retrieved from https://www.autismspeaks.org/science/science-news/cdc-increasesestimateautism%E2%80%99s-prevalence-15-percent-1-59-children
- Chew Stixx Orange Citrus Flavor (2018). Retrieved from https://funandfunction.com/chewstixxorange-citrus-flavor.html
- Cuvo, A. J., Reagan, A. L., Ackerlund, J., Huckfeldt, R., & Kelly, C. (2010). Training children with autism spectrum disorders to be compliant with a physical exam. *Research in AutismSpectrum Disorders*, 4(2), 168-185. https://doi.org/10.1016/j.rasd.2009.09.001
- Developmental Delay (2014). Retrieved from https://www.listenandlearn.com.au/developmental-delay/
- Drake, J., Johnson, N., Stoneck, A. V., Martinez, D. M., & Massey, M. (2012). *Evaluation of a coping kit for children with challenging behaviors in a pediatric hospital. Pediatric Nursing, 38*(4), 215-221. Retrieved from https://www.pediatricnursing.org/
- Emerson, E. (2012). Deprivation, ethnicity and the prevalence of intellectual and developmental disabilities. Journal of Epidemiology and Community Health, 66(3), 218–224. https://doi.org/10.1136/ jech.2010.111773.
- Facts and Figures. (2018). Retrieved from https://www.autismspeaks.org/autism-facts-andfigures
- Ganz, J.B., Mason, R.A., Goodwyn, F.A., Boles, M.B., Heath, A.K., ...Davis, J.L.(2014).Interaction of participant characteristics and type of AAC with individuals with ASD: A meta-analysis. *American Journal of Intellectual and Developmental Disabilities*, 119(6),516-535. http://dx.doi.org/10.1352/1944-7558-119.6.516.
- Gillis, J. M., Natof, T. H., Lockshin, S. B., & Romanczyk, R. G. (2009). Fear of routine physical exams in children with autism spectrum disorders: Prevalence and intervention effectiveness. *Focus on Autism and Other Developmental Disabilities, 24*(3), 156-168.Retrieved from https://doi.org/10.1177/1088357609338477

- Goldbart, J., Chadwick, D, & Buell, S. (2014). Speech and language therapists' approaches to communication intervention with children and adults with profound and multiple learning disability. International Journal of Language and Communication Disorders, 49(6), 687-701. https://doi.org/10.1111/1460-6984.12098
- Hagan, L., & Thompson, H. (2013). It's good to talk: Developing the communication skills of an adult with an intellectual disability through augmentative and alternative communication. *British Journal of Learning Disabilities, 42,* 68-75. http://dx.doi.org/10.1111/bld.12041.
- Harris, J. (2013). New terminology for mental retardation in the DSM-5 and ICD-11. Current Opinion in Psychiatry, 26(3). 260-262. <u>https://doi-org.p.atsu.edu/10.1097/YCO.0b013e32835fd6fb</u>
- Hudson, J. (2006). Prescription for success: Supporting children with austism spectrum disorders in the medical environment. Autism Asperger Publishing Co., Shawnee Mission, Kansas.
- Kaiser, A.P., & Roberts, M.Y. (2013). Parent-implemented enhanced milieu teaching with preschool children who have intellectual disabilities. *Journal of Speech, Language, and Hearing Research, 56*, 295-309. http://jslhr.pubs.asha.org/.
- Lancioni, G.E., O'Reilly, M.F., Basili, G. (2001). Use of microswitches and speech output systems with people with severe/profound intellectual or multiple disabilities: A literature review. *Research in Developmental Disabilities*, 22, 21-40.
- Lathe, R. (2006). Autism, Brain, and Environment. London: Jessica Kingsley Publishers. Retrieved from http://p.atsu.edu/login?url=http://search.ebscohost.com/login.aspx?direct =true&db=nlebk&AN=173689&site=ehost-live&scope=site
- Lim, H. A. (2011). Developmental speech-language training through music for children with autism spectrum disorders : Theory and clinical application. London: Jessica Kingsley Publishers. Retrieved from http://p.atsu.edu/login?url=http://search.ebscohost.com.p.atsu.edu/login.aspx?direct=tru&db=nlebk&AN=420408&site=eds-live
- Luckins, J. M., & Clarke, M. T. (2021). Can Conversation-Based Intervention Using Speech-Generating Devices Improve Language in Children With Partially Intelligible Speech? Communication Disorders Quarterly, 42(3), 131–144. https://doi.org/10.1177/1525740119880299

- Monz, B., Houghton, R., Law, K., & Loss, G. (2019). Treatment patterns in children with autism in the United States. Autism Research, 12 (3), 517-526. https://doi.org/10.1002/aur.2070
- Mulhern, T., Lydon, S., Healy, O., Mollaghan, G., Ramey, D., & Leoni, M. (2017). A systematic review and evaluation of procedures for the induction of speech among persons with developmental disabilities. *Developmental Neurorehabilitation*, 20(4), 207–227. https://doi.org.p.atsu.edu/10.3109/17518423.2016.1150360
- Narula-Isaac, M (2005). Ear exams: Watch the light. Listen for the "shhh". *Contemporary Pediatrics, 22*, (7). Retrieved from http://www.modernmedicine.com/modernmedicine/Pediatrics/home/40165
- Newman, S. (2008). Small Steps Forward : Using Games and Activities to Help Your Pre-School Child with Special Needs Second Edition (Vol. 2nd ed). London: Jessica Kingsley Publishers. Retrieved from http://p.atsu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=nle&AN=236366&site=eds-live
- Nieto, C., López, B., & Gandía, H. (2017). Relationships between atypical sensory processing patterns, maladaptive behaviour and maternal stress in Spanish children with autism spectrum disorder. *Journal of Intellectual Disability Research*, 61(12), 1140-1150. https://doi.org/10.1111/jir.12435
- Orellana, L., Martínez-Sanchis, S., & Silvestre, F. (2014). Training adults and children with an Autism Spectrum Disorder to be compliant with a clinical dental assessment using a TEACCH-based approach. *Journal of Autism & Developmental Disorders, 44*(4), 776-785. https://doi-org.p.atsu.edu/10.1007/s10803-013-1930-8
- Palisano, R. J., Shimmell, L. J., Stewart, D., Lawless, J. J., Rosenbaum, P. L., & Russell, D. J. (2009). Mobility Experiences of Adolescents with Cerebral Palsy. Physical & Occupational Therapy in Pediatrics, 29(2), 135–155. Retrieved from http://p.atsu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=s3hAN=38419578&site=eds-live
- Rah, S. S., Hong, S.-B., & Yoon, J. Y. (2020). Prevalence and Incidence of Developmental Disorders in Korea: A Nationwide Population-Based Study. Journal of Autism & Developmental Disorders, 50(12), 4504–4511. <u>https://doi.org/10.1007/s10803-020-04444-0</u>
- Rah, S. S., Hong, S.-B., & Yoon, J. Y. (2021). Screening Effects of the National Health Screening Program on Developmental Disorders. Journal of Autism & Developmental Disorders, 51(7), 2461–2474. https://doi.org/10.1007/s10803-020-04712-z

- Sensory Issues. (2018). Retrieved from https://www.autismspeaks.org/sensory-issues
- Vandereet, J., Maes, B.Lembrechts, D., & Zink, I. (2011). Expressive vocabulary acquisition in children with intellectual disability: Speech or manual signs? *Journal of Intellectual and Developmental Disability, 36*(2), 91-104. http://dx.doi.org/ 10.1080/13668250.2011.572547.
- Weltman, E.A. (2007). Bubbles and the ART of medicine. Contemporary Pediatrics, 24, (3) 88. Retrieved from http://www.modernmedicine.com/modernmedicine/Pediatrics/home/40165
- Wexler, B.E., Holmes, A.S., Shore, S.M., and Rollins, P.R. (2015). Autism in the health care and community setting. International Board for Credentialing and Continuing Education Standards. 1-15.
- Zablotsky, B., Black, L.I., & Blumberg, S.J. (2017). Estimated prevalence of children withdiagnosed developmental disabilities in the United States, 2014-2016. Retrieved from https://www.cdc.gov/nchs/products/databriefs/db291.htm

Questions??? Comments? Tips? Criticism?

• E-mail: tmmeersman@noctrl.edu

