Chest Imaging Review

Pat Whitworth, MD Vanderbilt University Medical Center

Disclosures

No relevant commercial relationships to disclose.

Learning Objectives

- Identify important anatomy on CXR
- Implement a CXR search pattern and a chest CT search pattern
- Identify and evaluate typical support devices seen on CXR
- Diagnose common pathologies seen on CXR
- Diagnose common pathologies seen on chest CT

CXR Anatomy

Frontal view (AP or PA)

CXR Anatomy

Lateral view

CXR Search Pattern

Just have one!

ABC

- A: Airway, Access
- B: Bones
- C: Cardiomediastinal silhouette
- D: Diaphragm
- E: Edges
- F: (lung) Fields
- G: Gut
- · H: Hilum

Set the stage

- Technique: Position, exposure
- Compare to priors!

A: Access / Airway

TUBES AND LINES

ENDOTRACHEAL TUBE (ET)

- Ideally 3-7 cm above the carina
 >2 cm often accepted
- Normal excursion with neck flexion and extension ~ 2 cm
 - Hose follows nose
- Generally want ~level of the clavicular heads

•NG/OG tube down right main bronchus

•Enteric feeding tube down left main bronchus

- Nasogastric (NG) and orogastric (OG) tubes are designed to decompress the stomach and reduce risk of aspiration
- Look for proximal side port
- Malpositioning can increase risk of aspiration – bypass GE junction

ENTERIC TUBE POSITIONS

CENTRAL VENOUS LINES

- Ideal location for tip is within SVC or at the superior cavoatrial junction
- Risk of thrombosisis lower in central veins
- Catheter tip in atrium increases risk of arrhythmia, perforation

CENTRAL VENOUS LINES

Central Line Problems

Central Line Problems

Central Line Problems

A: AIRWAY

A: AIRWAY PROBLEMS

Airway Problems

- Most important to look:
 - Trauma
 - Including after a code
 - Cancer
- Visible bones:
 - Ribs
 - Spine
 - Clavicles
 - Scapulae
 - Sometimes humeri

CARDIOMESIATINAL SILHOUETTE

- Heart size
- Mediastinal size
- Contour
- Silhouetting

- Useful to evaluate for
 - Consolidation/atelectasis
 - Lung volumes
 - Effusions

Normal

- Unless loculated, will layer dependently
 - Different appearance in erect vs supine patient
- Can distinguish free vs loculated effusion with lateral decubitus film (affected side down)

- Gradient density
 - Typical appearance in supine patient

- Meniscus
 - Erect patient

HYDROPNEUMOTHORAX

D: DIAPHRAGM

If both sides of the diaphragm are visible or the hemi-diaphragms connect it is a sign of pneumoperitoneum

EDGES

Check both the film edges and anatomical edges

E: EDGES

E: EDGES

"Anatomic edges": Pleura, mediastinum and right paratracheal stripe

PNEUMOTHORAX

- Nondependent
 - Different in erect vs supine patient
 - Signs
 - Thin white line*
 - No lung markings beyond
 - Deep sulcus sign
 - Hyperlucent lung (anterior pneumothorax)
 - Mediastinal shift associated with hyperlucency
 - Tension
 - Sharp diaphragm (subtle)

THIN WHITE LINE

TENSION PNEUMOTHORAX

- Hyperlucency
- Mediastinal shift
- Can have deep sulcus sign

E: EDGES

PNEUMOTHORAX

- PTX should be thin sharp white line
- On upright views, no vascular markings peripheral to the line
- Will not extend past the chest wall

SKIN FOLD

- Vascular markings peripheral to the line
- May extend outside thoracic cavity

E: EDGES

PNEUMOTHORAX

SKIN FOLD

F: (LUNG) FIELDS

SILHOUETTE SIGN

ATELECTASIS VS PNEUMONIA: THE BOOK VERSION

Atelectasis

Volume loss

Ipsilateral shift

Linear, wedge-shaped

Apex at hilum*

Vascular crowding

No air bronchograms*

Pneumonia

Normal or increased volume

No shift

Consolidation

Not hilum-centered

No vascular crowding

Air bronchograms*

ATELECTASIS VS PNEUMONIA: REAL VERSION

• "There is an area of increased opacification in the right/left lung base which may represent atelectasis or pneumonia"

• In reality, the two are frequently found together and are difficult and often impossible to separate

RML PNEUMONIA VERSUS ATELECTASIS

Atelectasis

Pneumonia

RIGHT UPPER LOBE PNEUMONIA

LEFT UPPER LOBE ATELECTASIS

PULMONARY EDEMA

Fluid-related

Heart failure

Volume overload

Low oncotic pressure

Lymphatic insufficiency

Mitral regurgitation

Arrhythmia

Misc

Inhalation injury

Neurogenic

Re-expansion

DIC

Near-drowning

ARDS

CHF and Pulmonary Edema

Stage

Findings

1: Redistribution

(Cephalization) Cardiomegaly

2: Interstitial edema Volume overload Kerley B lines
Fissural thickening

3: Alveolar edema

Airspace opacity
Air bronchograms
"Cottonwool"
Pleural effusion

PULMONARY EDEMA

SEPTAL LINES (AKA KERLEY B LINES)

ALVEOLAR EDEMA

ARDS

ARDS AND PNEUMOTHORACES, SUBCUTANEOUS EMPHYSEMA

G: GUT

DON'T STOP AT THE DIAPHRAGM

H: HDDEN AREAS

H: HIDDEN

CXR: Common Pathologies

Cases!

QUICK ASIDE: THINGS THAT ARE NORMAL

QUICK ASIDE: THINGS THAT ARE NORMAL

QUICK ASIDE: THINGS THAT ARE NORMAL

Chest CT Anatomy

A brief overview

Chest CT Anatomy

- Cardiovascular
 - Jugular and brachiocephalic veins
 - SVC
 - Carotids and vertebral arteries
 - Aorta
 - Pulmonary arteries
 - Heart
- Nodes
 - Hilar, mediastinal, supraclavicular
- Esophagus
- Front and back (along pleura)
- Bones and soft tissues

Chest CT Anatomy

- Cardiovascular
 - Jugular and brachiocephalic veins
 - SVC
 - Carotids and vertebral arteries
 - Aorta
 - Pulmonary arteries
 - Heart
- Nodes
 - Hilar, mediastinal, supraclavicular
- Esophagus
- Front and back (along pleura)
- Bones and soft tissues
- Lung and Airways
 - 4 quadrants versus by lobe

Chest CT: Common Pathologies

Cases!

Take-home points

- Knowing the anatomy helps localize pathology
- Have a search pattern and stick to it
- Know the appearances of the most common pathologies
- Atelectasis comes with volume loss but can be hard to tell from PNA
- Silhouetting is your friend
- Use the lateral!

References

- Bradshaw J, Cremers S, Herfkens F. "Heart Failure." Radiology Assistant, 1 Sept 2010, https://radiologyassistant.nl/chest/chest-x-ray/heart-failure. Accessed 10 Aug 2021.
- Delden O, Smithuis R. "Basic Interpretation." *Radiology Assistant*, 18 Feb 2013, https://radiologyassistant.nl/chest/chest-x-ray/basic-interpretation. Accessed 10 Aug 2021.
- Goodman LR, Felson B (2015). Felson's principles of chest roentgenology: A
 programmed text. Philadelphia, Elsevier Saunders, 2015.
- Smithuis R. "Lung disease." Radiology Assistant, 1 Feb 2014, https://radiologyassistant.nl/chest/chest-x-ray/lung-disease. Accessed 10 Aug 2021.
- Special thanks to Kim Sandler MD, Vanderbilt University Medical Center

Questions?