Spinal Emergencies: Recognition and Management in the Outpatient Setting

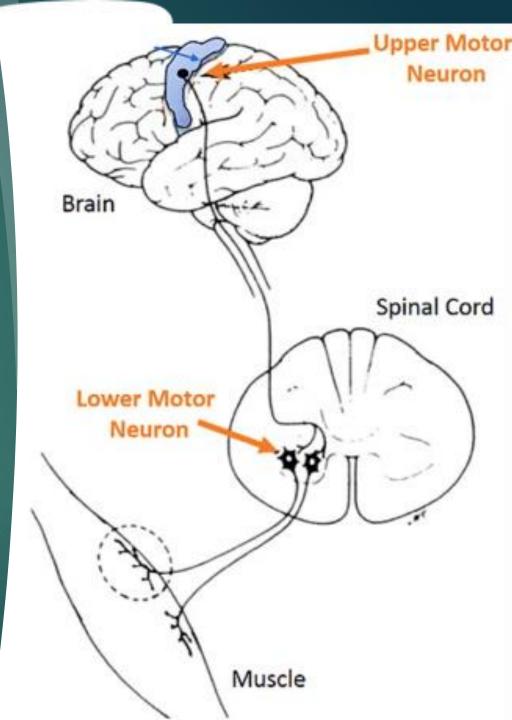
MICHAEL O'CONNELL, DO 5/22/2021

Outline

- Anatomy
- Myelopathy
- Cauda Equina Syndrome
- Infection
- ► Tumor
- ► Fractures
- Syringomyelia

Anatomy

Voluntary movement

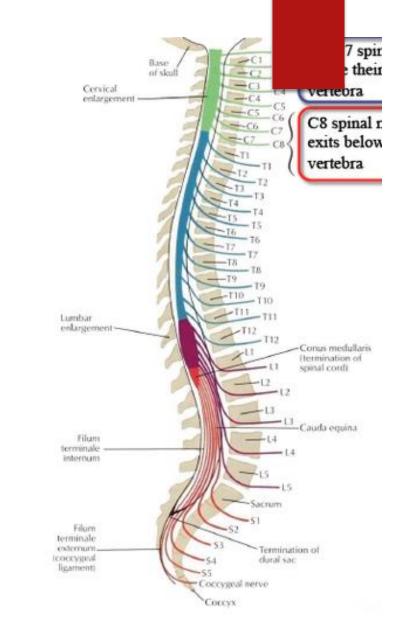

Accomplished via a two-neuron circuit

Upper motor neurons (UMN)

- Originates in motor cortex
- Travels down to the spinal cord

Lower motor neurons (LMN)

- Originates at anterior horn cell (AHC) in spinal cord
- Travels down to innervate skeletal muscle

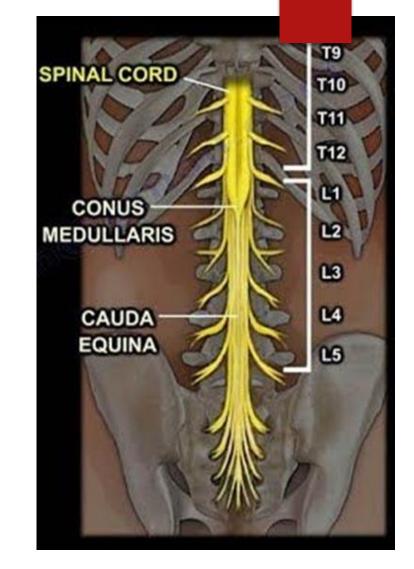

Anatomy

Cervical and Thoracic spine

- Each AHC/LMN located at respective spinal level
- Immediately exits the spinal canal

Lumbosacral Spine

- Each AHC/LMN located at conus medullaris
- Stays within spinal canal until they exit at respective level


Anatomy

Conus Medullaris

- Distal aspect of the spinal cord
- ► Located L1-L2
- Contains anterior horn cells of lumbosacral spine

Cauda Equina

- ► "Horse's tail"
- Describes lumbosacral spinal nerves within spinal canal, prior to exiting out foramen

Myelopathy

Neurological deficit(s) related to compression and dysfunction of spinal cord

Cervical, thoracic, upper lumbar spine

UMN dysfunction

- Weakness below level of lesion
- Loss of hand dexterity, gait dysfunction/falls, bowel and bladder dysfunction
- ► Examination
 - Hyperreflexia, positive UMN signs (Hoffman, Babinski, clonus)

Cauda Equina Syndrome

Neurological deficit(s) related to compression of lumbosacral nerves within spinal canal

LMN dysfunction

- ▶ Pain, often asymmetric
- Lower extremity weakness, gait dysfunction/falls, bowel and bladder dysfunction, saddle anesthesia
- Examination
 - ► Hyporeflexia, negative UMN reflexes

Myelopathy and Cauda Equina Syndrome: Etiologies

Degenerative

- Infection
 - Epidural Abscess
- Trauma
 - Central Cord Syndrome
 - ► Fractures
- Tumor
 - Primary
 - Metastasis
- Syrinx

Myelopathy and Cauda Equina

MRI is diagnostic modality of choice

Mainstay of treatment is surgical decompression

- Progressive neurological deficits
- Intractable pain
- Clinical features mild and non-progressive:
 - Recommend at least a surgical consultation
 - If surgery is deferred, need close follow up to assess neurologic status for any progression

If no neurologic impairments, surgery not recommended

Degenerative

Spondylosis, facet joint arthropathy, joints of luschka, osteophytes of vertebral body, ligamentous hypertrophy

- Most common
- Insidious onset

Disc Herniation

- Acute presentation
- Radiculopathy often present

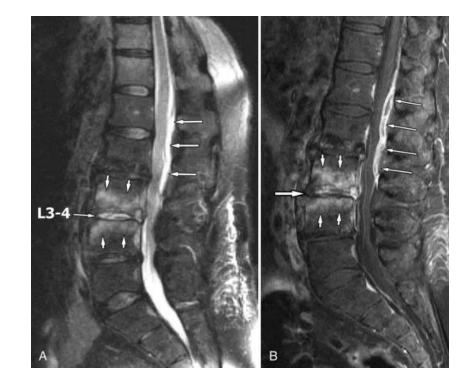
Epidural Abscess, Discitis, Osteomyelitis

► Risk Factors

- ► IVDU
- Spinal procedure (surgery, catheter, steroid injection)
- Diabetes
- ► 30% idiopathic

Clinical Presentation

- Classic triad of fever, back pain, and neurologic deficits
 - ► Rare
- Back pain
 - Most common, acute and insidious onset
- ► Fever
 - ► 1/3 of cases
- Neurologic deficits
 - More common with epidural abscess
- ► Focal tenderness on palpation of spine


Epidural Abscess, Discitis, Osteomyelitis

► Work Up

- ► Serologic : ESR, CRP, CBC with differential
- Imaging: MRI with and without contrast
 - Findings suggestive of infection: Increased T2 signal involving disc, endplate destruction, epidural or paraspinal enhancement
- Cultures: Epidural aspiration, bone biopsy if osteomyelitis

Management

- Infectious Disease
- Surgical consult
 - ► If neurologic deficits present

Traumatic

Central Cord Syndrome

Compression Fractures

Central Cord Syndrome

Myelopathy affecting cervical spinal cord

- Hyperextension Injury
- Older individuals
- Pre-existing cervical spondylosis
- Weakness
 - Affects upper extremities greater than lower extremities
 - Distal extremity > proximal
- Bowel and bladder dysfunction
 - ► Variable

Clinical Scenario

Subtle hand weakness in setting of recent fall

Compression Fracture

Clinical Presentation

- Back pain
 - Post-traumatic
 - Most common scenario
 - Fall, cough, lifting heavier objects
 - ► Atraumatic
 - Pathologic?

► Neurologic deficits?

Risk Factors

- Osteoporosis
- Advanced age
- Chronic steroid use

Compression Fracture

Radiographic Features

- Wedge shaped deformity affecting anterior vertebral body wall
- Collapse of superior endplate
- Posterior cortex
 - Posterior displaced?
 - If retropulsion, higher likelihood of neurologic deficit

Most commonly in thoracolumbar junction

Compression Fracture: Management

Advanced imaging?

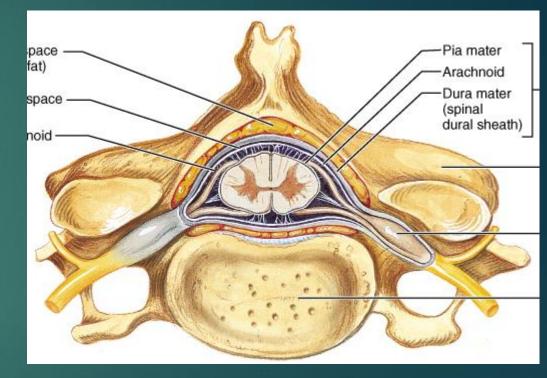
- ► Neurologic deficits
- Retropulsion of posterior vertebral body
- ► Intractable pain

Pain control

- ▶ NSAIDS, opioids (short term)
- Bracing (Lumbar support orthoses)
- Augmentation procedures (kyphoplasty, vertebroplasty)
- Physical Therapy
 - Neutral and extension-based protocol
 - ► Fall prevention
- Optimization of osteoporosis

Spinal Cord Tumors

Intramedullary


- Arise within spinal cord itself
- Gliomas (astrocytoma, ependymoma)

Extramedullary, Intradural

- Meningioma
- Peripheral nerve sheath tumor

Extradural (Metastatic)

- Most commonly seen in vertebral body
- External compression of spinal cord

Spinal Cord Tumors: Metastatic

Presentation

- Back pain
 - Nocturnal awakening
 - Supine position
 - Thoracic spine most common location (70%)

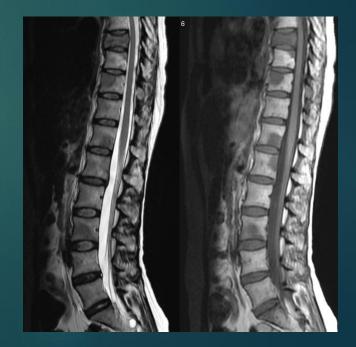
Late Findings

- Neurological deficits
- Bowel or bladder dysfunction

Risk Factors

- Prior history of cancer
- Prostate, lung, breast
 - Back pain initial presenting symptom in 20% of patients
- History of smoking, unintentional weight loss

Spinal Cord Tumors: Management


Imaging

MRI with and without contrast, entire spine (cervical, thoracic, lumbar)

Diagnostic modality of choice

► Features

- Multiple lesions, hypointense on T2
- Round, lobulated
- Vertebral Body: Intact
 - Height preserved
 - Endplates and discs preserved

Spinal Cord Metastases

Consultation

Oncology

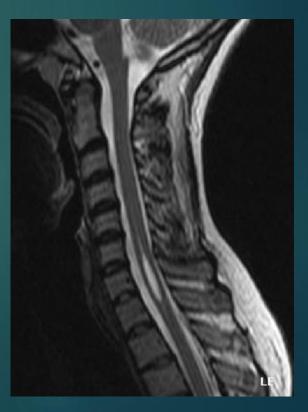
Further diagnostic evaluation

If neurological deficits and/or pain

- Surgical referral
 - Resection
- Radiation oncology

Syringomyelia

Fluid filled cystic cavity within spinal cord


- ► Cervicothoracic junction
 - Most common location

Risk Factors

- ► History of Chiari malformation
- Post-inflammatory (transverse, multiple sclerosis)
- History of spina cord tumors
- ► History of traumatic spinal cord injury

Imaging

- ► Often found incidentally
- MRI with contrast most sensitive
- Resect if intractable pain or neurological deficits

Take Home Points

Symptoms of Myelopathy and Cauda Equina

- Emphasis on Neurological Exam
 - ► UMN vs LMN findings
- Rule out red flag diagnoses
 - ► Cancer
 - ► Infection
- Appropriate diagnostic work-up and referral

References

Jeffery DR, Mandler RN, Davis LE. Transverse myelitis. Retrospective analysis of 33 cases, with differentiation of cases associated with multiple sclerosis and parainfectious events. Arch Neurol 1993; 50:532.

de Seze J, Lanctin C, Lebrun C, et al. Idiopathic acute transverse myelitis: application of the recent diagnostic criteria. Neurology 2005; 65:1950.

Kaplin AI, Krishnan C, Deshpande DM, et al. Diagnosis and management of acute myelopathies. Neurologist 2005; 11:2.

Pidcock FS, Krishnan C, Crawford TO, et al. Acute transverse myelitis in childhood: center-based analysis of 47 cases. Neurology 2007; 68:1474.

Tarulli AW, Raynor EM. Lumbosacral radiculopathy. Neurol Clin 2007; 25:387.

Ranson SW. The structure of the spinal ganglia and of the spinal nerves. J Comp Neurol 1912; 22:159.

Hay MC. Anatomy of the lumbar spine. Med J Aust 1976; 1:874.

<u>Hamanishi C, Tanaka S. Dorsal root ganglia in the lumbosacral region observed from the axial views of MRI.</u> Spine (PhilaPa 1976) 1993; 18:1753.

Kikuchi S, Sato K, Konno S, Hasue M. Anatomic and radiographic study of dorsal root ganglia. Spine (Phila Pa 1976) 1994; 19:6.

Levin KH. Electrodiagnostic approach to the patient with suspected radiculopathy. Neurol Clin 2002; 20:397.

Lee MW, McPhee RW, Stringer MD. An evidence-based approach to human dermatomes. Clin Anat 2008; 21:363.