Orthacarolina

Evaluation & Management of Femoroacetabular Impingement

Alexander Bitzer, MD May 21, 2021

Disclosures

none

Hip Pain Adolescent/Young Adult

•Intra-articular

- FAI
- Labrum: tears
- Chondral: Injury, OA
- Capsule: sprain, tightness
- Ligamentum teres tears
- Fem neck stress frx
- Osteonecrosis
- Loose bodies
- Young patients
 - SCFE
 - Perthes
 - DDH

Extra-articular

- Bands
 - IT band, Psoas tendon
- Strains
 - Gluteus medius, adductor, hamstring, rectus
- Bursitis
 - Trochanteric, iliopsoas, ischial
- Nerve entrapment
 - Perineal, obturator
- Infection
- Osteitis pubis
- Hip pointer

Algorithmic approach

Injury History

> Clinical Exam

> > **Imaging**

History

- History
- Duration of pain
- Location
- Treatments
- Depth/Layers
 - Bony (Layer 1)
 - FAI/Version/Alignment/Frx
 - Mechanical
 - Static (Layer 2)
 - Labrum/Cartilage/Capule
 - Mechanical
 - Dynamic (Layer 3)
 - Cardinal points
 - Neural/Soft tissue (Layer 4)
 - diagnosis of exclusion

Layers

- 2: Inert layer
- 3: Dynamic layer
- 4: Neural layer

Layer 1

- Hip Mechanics
 - FAI
 - Version disorders
 - Femoral neck stress frx
 - Pelvic and sacral stress frx

Layer 2

- Inert layer
 - Acetabular labral tears
 - Cartilage injuries
 - Osteoarthritis
 - Capsular injury/capsulitis
 - Often coupled with layer 1 injuries

Layer 3 = Dynamic Layer (cardinal points)

- Anterior
 - Iliopsoas
 - Internal coxa saltans
 - Tendonitis
 - Bursitis
 - Rectus femoris
 - tendonitis
 - avulsion
 - ASIS/AIIS (pediatrics)
 - Impingement
- Lateral (older population)
 - Gluteal muscles
 - Tendonitis/bursitis
 - Abductor overuse (dysplasia)
 - Proximal IT Band
 - External coxa saltans

Layer 3 Continued

- Medial
 - Adductors
 - Acute tears
 - Athletic pubalgia
 - Increased pelvic motion compensating for decreased hip motion
- Posterior
 - Hamstring
 - Acute avulsion
 - Acute on chronic
 - Myotendinous
 - Ischial tuberosity avulsion
 - Ischiofemoral impingement
 - Quadratus femoris impinged

Layer 4

- Neural layer
 - Entrapments
 - Meralgia paresthetica
 - Obturator nerve
 - Ilioinguinal/genitofemoral
 - Surgery
 - LFCN
 - pudenal

Algorithmic approach

Injury History

> Clinical Exam

> > **Imaging**

Normal Passive Hip ROM

• Adduction: 30°

• Abduction: 45°

Flexion: 110°

• Extension: 0°

Internal rotation: 30°

External rotation: 50°

Physical Exam – FAI specific

- Range of Motion:
 - Often Decreased flexion in both internal and external rotation
- Neuro:
 - Often normal
- Strength:
 - Normal except when associated with tendinopathies

- Special Tests
 - C sign
 - Anterior Impingement (FADIR)
 - Stinchfield
 - Posterior Impingement
 - FABER
 - Trendelenburg
 - Consider the door quited space

Adductor/core muscle injury

- Resisted adduction of the knees
- Half sit up resisted

Algorithmic approach

Injury History

> Clinical Exam

> > **Imaging**

Imaging

A Systematic Approach to the Plain Radiographic Evaluation of the Young Adult Hip

By John C. Clohisy, MD, John C. Carlisle, MD, Paul E. Beaulé, MD, Young-Jo Kim, MD, Robert T. Trousdale, MD, Rafael J. Sierra, MD, Michael Leunig, MD, Perry L. Schoenecker, MD, and Michael B. Millis, MD

Always start with a good AP of the pelvis!!!

Next Views

• Dunn view

False profile

Mnemonic for Systematic Eval

- Pathology
 - Fracture
 - Tumors
 - SCFE
 - Perthes
- Arthritis
- Acetabulum
 - Version
 - Dysplasia
 - Protrusio/Profunda
- Impingement
 - CAM
 - Pincer
- Neck
 - Neck shaft angle

Musculoskeletal Institute

Arthritis

TONNIS CLASSIFICATION OF HIP OSTEOARTHRITIS; 1999

Grade	Radiographic features					
0	- No signs of osteoarthritis					
1	 Slight narrowing of joint space Slight lipping at joint margin Slight sclerosis of the femoral head or acetabulum 					
2	 Small cysts in the femoral head or acetabulum Increasing narrowing of joint space Moderate loss of sphericity of the femoral head 					
3	 Large cysts Severe narrowing or obliteration of joint space Severe deformity of the femoral head Avascular necrosis 					

Kovalenko, B., Bremjit, P., & Fernando, N. (2018). Classifications in Brief: Tönnis Classification of Hip Osteoarthritis. Clinical Orthopaedics and Related Research®, 476(8), 1680-1684.

von Bernstorff, M., Feierabend, M., Jordan, M., Glatzel, C., Ipach, I., & Hofmann, U. K. (2017). Radiographic hip or knee osteoarthritis and the ability to drive. Orthopedics, 40(1), e82-e89.

Acetabulum

- LCEA
- ACEA
- Extrusion
- Protrusio
- Version
- Index

Impingement (Cam) – Alpha Angle

- Alpha
 - < 50

Impingement (Cam) - Offset

- Head Neck Offset
 - Normal: >0.17
 - Normal offset = 9-11mm

Impingement (Pincer)

Pincer

Neck

Femoroacetabular Impingement

- What is it?
 - Mismatch between bony anatomy and motion needed
- What causes it?
 - Orientation of acetabulum
 - Depth of acetabulum
 - Femoral head/neck junction
- Associated Injuries?
 - Labrum
 - cartilage
- Prognosis?
 - Can lead to early osteoarthritis

"Femoroacetabular Impingement"

CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Number 363, pp. 93-99 @1999 Lippincott Williams & Wilkins, Inc.

Anterior Femoroacetabular Impingement After Periacetabular Osteotomy

S.R. Myers, MD; H. Eijer, MD; and R. Ganz, MD

- Case Report of 5 patients s/p Bernese PAO
- Developed groin symptoms and decreased hip ROM years later after correction
- Open surgical dislocations revealed "anterior impingement"

Since then

- Correction of pathology performed arthroscopically late 90s, early 2000
- Clinical outcomes based studies ~2005
- 2007 2011: 250% increase

FAI

CAM Lesior

Pincer Lesion

Majority = Mixed

How do FAI injuries Occur in Athletes?

- Contact sports
- Repetitive rotational movements
 - Adduction, Abduction, IR, ER
- Falls
- Lateral impact injury
- Forceful contractions combined with limited anatomy

Who does FAI affect?

Reported Prevalence of Radiographic Cam Deformity Based on Sport

A Systematic Review of the Current Literature

Derrick M. Knapik,*^{†‡} MD, Michael A. Gaudiani,[‡] BS, Brian E. Camilleri,[§] DO, Shane J. Nho,^{||} MD, James E. Voos,^{†‡} MD, and Michael J. Salata,^{†‡} MD

Investigation performed at Sports Medicine Institute,
University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA

TABLE 2 Reported Number of Radiographic Cam Deformities Based on Sport a

Sport	Studies, n	Radiographic Cam Deformity, n		Alpha Angle, \deg^b		Athlete Age, \mathbf{y}^b	
		Male	Female	Male	Female	Male	Female
Soccer	9	554	20	62.4 ± 6.8	50.1 ± 10.4	21.7 ± 4.2	21.4 ± 3.4
Hockey	8	269	_	61 ± 5	_	19.0 ± 3.8	_
American football	4	241	_	57.8 ± 5.2	_	21.6 ± 1.0	_
Ballet/dance	3	12	15	54	48.3 ± 1.7	24.7	21.9 ± 4.7
Track and field	2	9	14	52.3	50.2 ± 3.0	22.9	22.4 ± 2.9
Basketball	1	33	_	60.5	_	17.6	_
Martial arts	1	20	3	_	_	23	23
Golf	1	11	_	66	_	29	_
Skiing	1	11	_	55.2	_	15.2	_
Volleyball	1	_	1	_	39	_	19.2

Presentation

- Pain
 - Groin
 - Buttock
 - Insidious
 - Can be worse after sitting for long periods of time
 - Deep flexion sports
 - Radiation into thigh (does not go below knee)
- Symptoms
 - No neuro symptoms
 - Some mechanical symptoms
 - Can report sense of instability
- Positive C-sign

Advanced Imaging in FAI

- XR
 - Crucial for establishment of bony morphology
 - CAM
 - Pincer
 - Acetabular version/depth
 - Rule out fracture/avulsion
 - Evaluation for OA

- MRI
 - Great structural tool
 - Confirmation of history/PE findings
 - BAD SCREENING TOOL
 - High rate false positives
 - 44% labral tears in asymptomatic pts
 - Cartilage defects:
 - Femoral head: 6%
 - Acetabulum: 14%
 - 3T MRI best, hip specific
 - Avoid pelvis unless indicated

Advanced Imaging in FAI (cont.)

• CT:

- Invaluable for determining size and location of cam/ pincer lesions
- Best for evaluating bony anatomy/mechanics
- Important for early surgeons
- 3 dimensional interpretation (always better than 2D)

Treatment Algorithm

Treatment Algorithm

Intra-articular Injection

Diagnostic

Therapeutic

Response

Positive:

Continue non-op versus surgical Tx

Negative:

Consider non-hip etiologies of pain

Evaluate Surgical Indications

Tonnis grade

Center Edge Angle

CAM/Acetabular Version

Concomitant pathology

Hip Arthroscopy – portal placement

- Approach/Technique
- 2 or 3 portals
 - Standard
 - Anterior
 - Anterolateral
 - MAP/DALA
 - Adjunct
 - DALA
 - Posterolateral portal

Sciatic nerve

Hip arthroscopy – portal visualization

- Central compartments
 - Establish portals
 - Inter-portal cuts
 - Diagnostic scope
 - Acetabuloplasty
 - Labral repair
- Peripheral compartments
 - T-cut
 - Osteochondroplasty
 - Capsule repair

Hip arthroscopy = FAI goals

FAI outcomes

- Surgical success
 - 95% (defined as elimination of pain)
- Return to sport
 - 95% professional athletes; 85% collegiate athletes
- Average time RTS
 - 6 9 months
- Average improvement ROM
 - IR: 20°, flexion: 10°
- Complication rate
 - 1.4% (Byrd and Villar);
 - Traction: 0.5%; HO 1.6 6%; dislocation <1%; AVN <1%; Frx
 - Revision rate: 5-10%
- 90% revision due to inadequate cam revision

Associated Injuries – Labral Tears

Labrum Anatomy & Function

- Deepens socket (21%)
- Creates suction seal
- Increases contact area (28%)
- Pain generator (nociception)
- proprioception

- Triangular shape
- Circumferential contact
- Radial fibers
- Continuous with acetabular cartilage

Treatment Algorithm

Labral Repair Outcomes

> Arthroscopy, 2017 Sep;33(9):1679-1684, doi: 10.1016/j.arthro.2017.03.011, Epub 2017 May 10.

Return to Sport and Clinical Outcomes After Hip Arthroscopic Labral Repair in Young Amateur Athletes: Minimum 2-Year Follow-Up

Rohith Mohan ¹, Nick R Johnson ¹, Mario Hevesi ¹, Christopher M Gibbs ¹, Bruce A Levy ¹, Aaron J Krych ²

- 92% return to sport, improved HHS
- Detachment of labrum and reattachment has worse outcomes

Orthop J Sports Med. 2018 Feb; 6(2): 2325967117752307. Published online 2018 Feb 5. doi: 10.1177/2325967117752307 PMCID: PMC5802644 PMID: 29435469

Prevalence and Impact of Hip Arthroscopic Surgery on Future Participation in Elite American Football Athletes

Derrick M. Knapik, MD, *†‡ Joe Sheehan, ATC,§ Shane J. Nho, MD, II James E. Voos, MD,§ and Michael J. Salata, MD§

- No risk of decreased ability to participate at elite level
- 93% had labral repairs, 35% FAI resection

Labral reconstruction outcomes

- Short term
- 75-90% success rate
- 85% RTS athletes
- 10% conversion THA

Arthroscopy. 2017 Sep;33(9):1685-1693. doi: 10.1016/j.arthro.2017.03.015. Epub 2017 May 29.

Arthroscopic Reconstruction of Segmental Defects of the Hip Labrum: Results in 22 Patients With Mean 2-Year Follow-Up.

Chandrasekaran S1, Darwish N1, Close MR1, Lodhia P1, Suarez-Ahedo C1, Domb BG2.

Am J Sports Med. 2013 Aug;41(8):1750-6. doi: 10.1177/0363546513487311. Epub 2013 May 3.

Acetabular labral reconstruction with an iliotibial band autograft: outcome and survivorship analysis at minimum 3-year follow-up.

Geyer MR1, Philippon MJ, Fagrelius TS, Briggs KK.

Arthroscopy. 2016 Jan;32(1):26-32. doi: 10.1016/j.arthro.2015.07.016. Epub 2015 Oct 1.

Allograft Use in Arthroscopic Labral Reconstruction of the Hip With Front-to-Back Fixation Technique: Minimum 2-Year Follow-up.

White BJ1, Stapleford AB2, Hawkes TK2, Finger MJ2, Herzog MM3.

Am J Sports Med. 2013 Oct;41(10):2296-301. doi: 10.1177/0363546513498058. Epub 2013 Aug 8.

Results of arthroscopic labral reconstruction of the hip in elite athletes.

Boykin RE¹, Patterson D, Briggs KK, Dee A, Philippon MJ.

Cartilage Injuries

- Wave sign
 - Delamination site
- Contre-coup injuries
- Acute traumatic chondral effects
- Surgical options
 - Microfracture
 - Small well circumscribed lesions
 - Fetal cartilage
 - Difficult to do (requires dry field)
 - OATS
 - · Lack of donor site

Post Op Rehab

- Labral debridement/acetabular work
 - WBAT
 - Emphasis on ROM
- Labral repair
 - PWB
 - Avoid extremes of flexion and ER for 4-6 weeks
- Cam resection
 - WBAT w/ crutches to avoid twisting motion for 4 weeks
 - Full motor control obtained:
 - Closed chain, light exercise
 - High impact prohibited for 3 months

Case

- Patient
 - 18 YOF DII soccer player with 2 years of hip pain
- Pain location
 - Hip/groin
 - anterior
- Duration
 - 2 years
- Previous Tx
 - PT
 - NSAIDS
 - Injection: relief for 2 months

- Exam
 - 5'4,130 lbs.
 - ROM
 - 100 FF
 - 20 IR (reproduces her pain)
 - 55 ER
 - Special
 - + FADDIR
 - Strength
 - 5/5 hip flexors and glutes
 - Neuro
 - intact

XR Imaging

MRI Imaging

Intraop

Post op XR

Outcome

- Doing well
- Able to return to sport and play 2 seasons
- Mild pain after competition
- Otherwise no pain when not playing

Newest frontiers in hip arthroscopy

- Role of ligamentum teres
- Capsular closure/ management
- Biologics
- Clinical outcomes
 - Debride
 - Repair
 - reconstruction

