Pediatric Lower Extremity Trauma

Virginia Casey, MD Pediatric Orthopedics OrthoCarolina

Many slides contributed by Christian Clark, MD

Children are not just small adults

• Bone less brittle

Still growing

 Ability to remodel
 Growth plate injuries

Children are not just small adults

Growth plate is weaker than ligaments

 Tend to have physeal injuries insteaad of "sprains"

Children are not just small adults

 Many times we will accept more deformity because of the potential to remodel

 Near the end of growth a child will be treated more like an adult

Wolff's Law

- Remodeling of bone occurs in response to physical stresses
 - Bone is deposited in areas of stress and resorbed from sites of little stress

Remodeling

- Amount of growth
 - Patient age
 - Bone / physis involved
 - Location in bone ie: proximity to physis
- Deformity in plane of motion

Remodeling

Growth Plate

- Physis is located at the metaphysis-epiphysis junction
- The physis "pushes" the epiphysis away from the metaphysis
- Proliferative zone is on the epiphyseal side

Growth plate injuries

- Growth plate fractures are common at the distal forearm
- Described using the Salter Harris classification
- Low risk of growth plate disturbance with SH I and II
- Moderate risk with SH III and IV

- Most commonly occur in adolescent athletes
- Occur with a violent contracture of the muscle during sports
- Results in an avulsion of the apophysis/ bone at the insertion of muscle

- Commonly occur at four locations:
- AllS Quadriceps
- ASIS Sartorius
- Inf Rami Hamstrings
- Lesser trochanter- psoas
- Can often be seen on radiographs, rarely need advanced imaging

Acute

Chronic

- Most avulsion injuries can be treated conservatively
- Consider surgical intervention with >1.5-3 cm of displacement, chronic pain/ weakness
- Can repair with suture anchors or screws with good results

14 yo male - MVC

 Now 15 yrs old -15 months after injury

 "Hip fractures in children are of interest because of the frequency of complications rather than the frequency of fractures."

• Canale

 Appropriate transfer to Level 1 Center

- Age and fracture type will guide treatment options for pediatrics
- Ability of the fracture to remodel guides treatment
- Energy for injury is much less in younger patients

- Initial treatment
 - Evaluate for other injuries
 - NV status
 - Splint? From Back to foot place leg on pillows
 - Float heel!!!
 - Buck's traction for older kids for comfort

- 0 to 1yo Pavlik harness/splint
- 1 to 3-5 yo Hip Spica
- 3-5-10 yo (100#) Flexible nails
- > 10 yo trochanteric entry nail
 - Avoid piriformis fossa even in those close to skeletal maturity
 - If you can see physeal scar avoid piriformis nail

- Newborns can sustain femoral shaft fractures during delivery
- Fairly low energy needed
- Can accept significant angulation and shortening
- Treat with Pavlik harness or posterior splint

- Can see in infants due to trauma or NAT
- Consider NAT if the patient is <2-3 years old
- Heals very quickly with abundant callus, often palpable
- Very good at remodeling

- In older children, usually <5 years old, consider spica casting
- Allows stabilization and reduction of the fracture
- Difficult for heavier kids
- Risk of complications from the cast
- <10 deg coronal, <20 deg sagittal, <2 cm short

Hip Spica

Avoid 90/90 position

 Reports of compartment syndome

- Gortex liner
- Place cylinder cast first
- Pad behind popliteal fossa
- Place knee at 45 degrees

- Over 5 years of age, can start to consider IM nail
- Usually will consider Flexible nails if under 8-9 years of age to protect proximal blood supply
- Better if patient is less than 100 lbs
- Not rotationally stable
- Remove at 6-12 months

Femur Fractures Flexible Nails

- Usually distal entry
- 1 Medial 1 Lateral
- Same size nails with combined 80% canal fill
- Works well even in oblique fractures
- Possible contraindiactions
 - Wt > 100#
 - Comminution
 - Distal Fracture

- Can consider submuscular plating for unstable fractures or heavier children
- Helps with comminuted, length unstable fractures
- Consider for very proximal or distal fractures

- As patient gets older, less concern for proximal blood supply
- Can perform Trochanteric IM nailing
- Allows stabilization for length and rotation
- Consider removal after healing

Femoral Shaft Fracture > 10 yo

- Trochanteric Entry Nail
- AVN reported with piriformis nail

Distal Femur Fractures

- Can occur thru the physis prior to skeletal maturity
- Often is a Type II SH Fracture
- Can often see with radiographs
- May need stress views or MRI if non-displaced

Distal Femur Fractures

- If truly non-displaced, can treat with casting
- With displacement, can treat with closed vs open reduction and internal fixation
- Consider k-wires for SH Type I
- Screw fixation with SH Type II

Distal Femur Fractures

- Distal femur physis is complex design
- Can lead to physeal bar, LLD, angular deformity
- 30-50% chance of growth plate disturbance
- Small chance of popliteal artery injury, compartment syndrome

Patella Fractures

- Sinding-Larsen apophysitis at connection of patellar tendon
- Avulsion fracture small fragment of patellar tendon avulsed off
- Sleeve fracture small fragment of bone with chondral fragment

Patellar Sleeve Fracture

- Fairly rare occurance
- Most commonly off the inferior pole
- Can see patella alta
- For displacement, need ORIF to repair fragment and cartilage
- Use darts, screws or suture

Tibial Spine Avulsion Fracture

- Classic injury is hyperextension with sports or bike riding
- ACL avulses medial tibial spine bone fragment
- Treatment depends on displacement
- Can try aspiration with closed reduction

Tibial Spine Avulsion Fracture

- Reduction can be blocked by intrameniscal ligament
- Fix with suture or screw
- Can develop arthrofibrosis
- Injury to ACL fibers is common

Tibial Tubercle Fractures

- Typically occurs with running, jumping sports
- Often occurs near skeletal maturity
- Consider operative fixation with displacement > 2 mm
- ORIF with small screws in epiphysis, across apophysis

Tibial Tubercle Fractures

- Periosteal sleeve often blocks reduction
- May need soft tissue repair as well as ORIF
- Consider meniscal injury
- Watch for concurrent patellar tendon injury
- Can use suture anchors for patellar tendon injury off tibia

Tibial Tubercle Fractures

- Can develop recurvatum from premature closure
- May need screw removal
- Need to be aware of possible compartment syndrome due to anterior tibial recurrent artery injury

- Bimodal distribution of occurrence
- In younger patients, can be low energy injury
- "Toddler's Fracture"
- Torsional injury
- Can be occult injury
- Treated with boot or cast

- Can occur with higher energy in older patients
- Limited displacement acceptable
- 5-10 deg angulation, <1 cm shortening, <50% translation

- Flexible nailing for skeletally immature
- Solid nail after physeal closure
- Plating for comminuted, length unstable fractures
- Consider external fixator for significant soft tissue injury

- Flexible nailing for skeletally immature
- Solid nail after physeal closure
- Plating for comminuted, length unstable fractures
- Consider external fixator for significant soft tissue injury

- Flexible nailing for skeletally immature
- Solid nail after physeal closure
- Plating for comminuted, length unstable fractures
- Consider external fixator for significant soft tissue injury

- Monitor for compartment syndrome after injury, watch for the three A's
- Can develop LLD or angular deformity
- Delayed union/ nonunion in open fractures

- Monitor for compartment syndrome after injury, watch for the three A's
- Can develop LLD or angular deformity
- Delayed union/ nonunion in open fractures

- Monitor for compartment syndrome after injury, watch for the three A's
- Can develop LLD or angular deformity
- Delayed union/ nonunion in open fractures

Cozen's Phenomenon

- In younger patients with isolated metaphyseal tibia fracture
- Increased blood flow to proximal physis (?)
- Typically occurs months after injury
- Usually resolves spontaneously, may need guided growth

Transitional Ankle Fractures

- Typically occur at the time of distal tibial physeal closure
- Distal tibia physis closes in an asymmetric pattern
- Gradually closes from middle to medial to lateral

Triplane Fractures

- Status of physis closure will dictate the type of injury
- Early in closure, injury pattern is a triplane fracture
- Results in various multiplanar injuries

Triplane Fractures

- Fracture occurs in the sagittal, coronal and axial planes
- Classic appearance shows a SH type III fracture on the AP view,
- SH type II fracture on the lateral view
- Can use CT to evaluate displacement, fragments

Triplane Fractures

- Displacement >2 mm consider surgery
- Multiple fracture patterns, with most being two or three parts
- Can have an extraarticular variant
- Closed vs open reduction, with screws in multiple planes

Tillaux Fractures

- Occurs closer to skeletal maturity
- Distal tibial physis is closed with the exception of the lateral anterior portion
- SH type III fracture caused by pull of the anterior inferior tib-fib ligament

Tillaux Fractures

- Consider surgical intervention if displacement is >2 mm
- Reduced with closed vs percutaneous vs open techniques
- Can place screw across fracture site to help reduce the fragment

Transitional Fractures

- Rarely cause significant growth disturbance as the occur during physeal closure
- Can cause premature OA in ankle with >2 mm of displacement
- Controversy about whether to remove epiphyseal screws

Questions?

