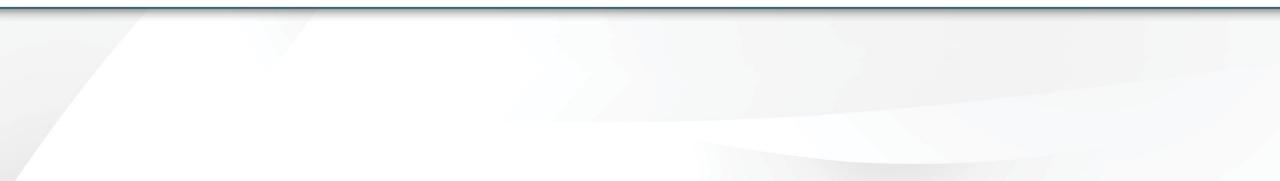
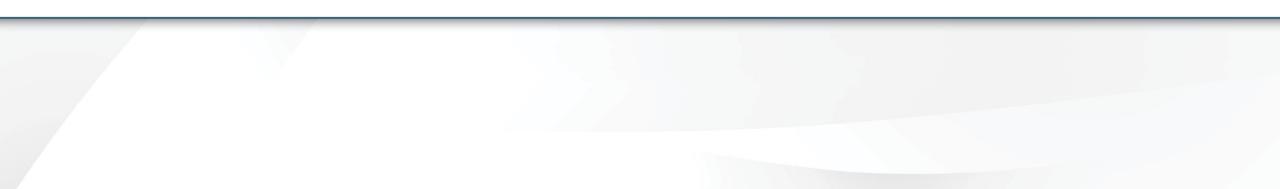
Activity presentations are considered intellectual property


These slides may not be published or posted online without permission from Vindico Medical Education (cme@vindicocme.com).

Please be respectful of this request so we may continue to provide you with presentation materials.

Managing Influenza: The Struggle is Real!


This continuing education activity is provided by

This activity is supported by an educational grant from Genentech, a member of the Roche Group.

Activity Chair

John J. Russell, MD, FAAFP

Clinical Professor of Family and Community Medicine Sidney Kimmel Medical College Thomas Jefferson University *Philadelphia, PA* Chair, Department of Family Medicine Program Director Family Medicine Residency Abington – Jefferson Health *Abington, PA*

Faculty

Ruth Carrico, PhD, DNP, APRN, CIC, FSHEA, FNAP

Professor

University of Louisville School of Medicine Division of Infectious Diseases *Louisville, KY*

Elyssa K. Rosenberg, MS, PA-C Emergency Medicine Physician Assistant Abington-Jefferson Health *Abington, PA*

Learning Objectives

Upon successful completion of this activity, participants should be better able to:

- Differentiate influenza from other respiratory illnesses by utilizing evidence-based diagnostic recommendations and best practices.
- Implement the use of antivirals for the treatment of influenza based on patient characteristics, as well as the treatment's efficacy and safety.
- Examine how the use of antiviral prophylaxis can reduce the spread of influenza infection.

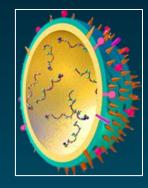
Update on Flu Epidemiology

John J. Russell, MD, FAAFP

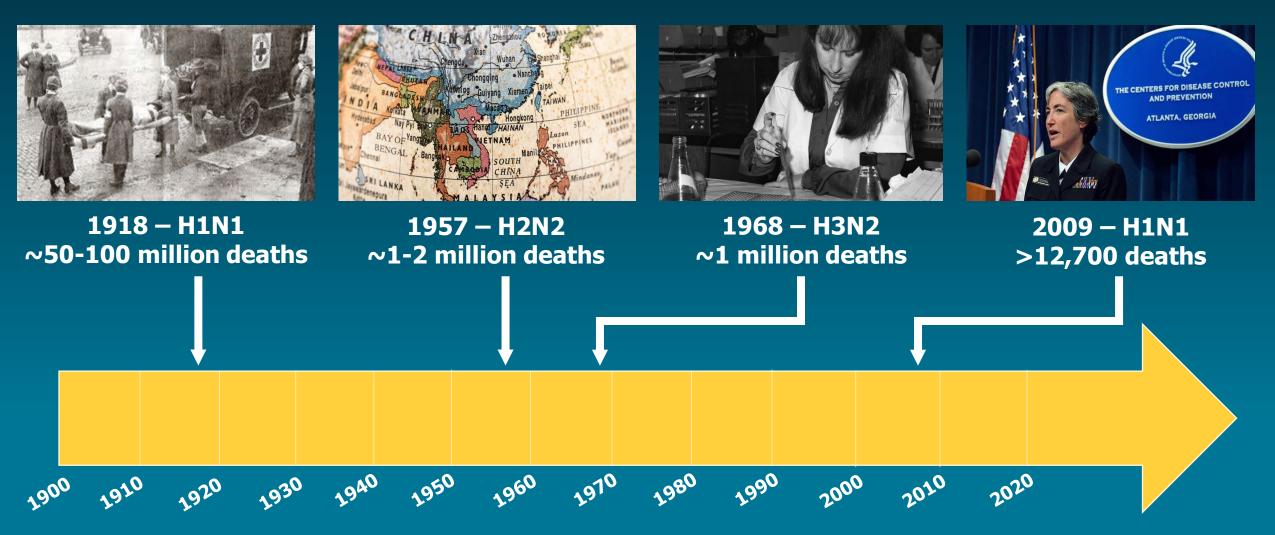
Clinical Professor of Family and Community Medicine Sidney Kimmel Medical College Thomas Jefferson University *Philadelphia, PA*

Chair, Department of Family Medicine Program Director Family Medicine Residency Abington – Jefferson Health *Abington, PA*

Disclosures


- Consulting Fee: Bayer, GlaxoSmithKline, Sanofi Pasteur
- Speakers Bureau: Sanofi Pasteur

History of Influenza


Felt to be due to the "influence of the stars"

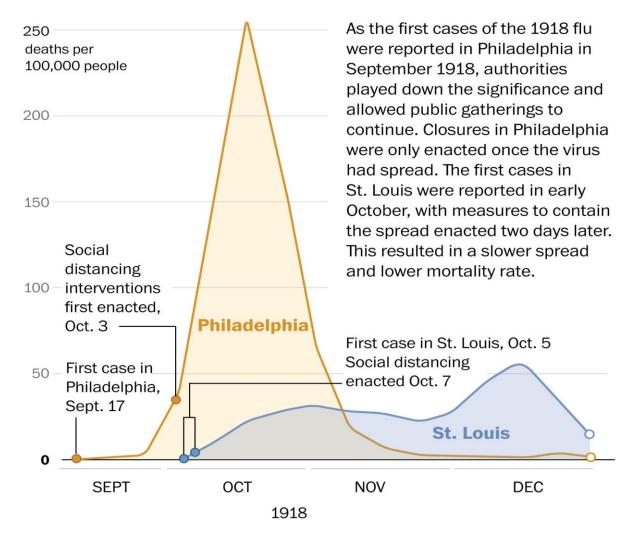
- Epidemics every 1 to 3 years for the past 400 years
- Pandemics ("worldwide epidemics")
 - Occur less often
 - First in 1590, 31 since then; last major pandemic occurred in 1977 (H1N1 in 2009)
 - 1918-1919: 21 million deaths worldwide; >500,000 deaths in the United States alone

The College of Physicians of Philadelphia. Accessed March 22, 2021. https://www.historyofvaccines.org/content/articles/influenza-pandemics

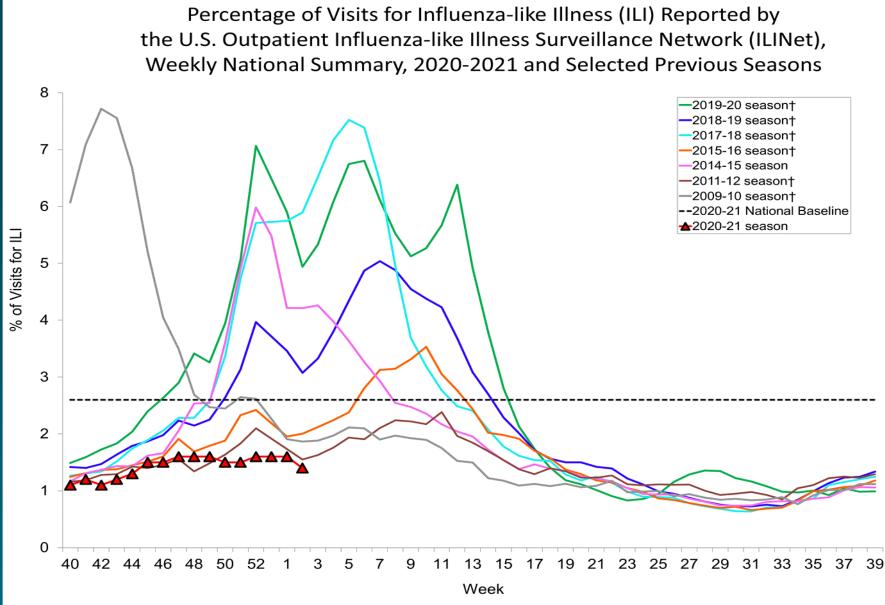
Flu Pandemics in the 20th and 21st Centuries

Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html

2019-2020 US Influenza Season*: Preliminary Burden Estimates



*Data from October 1, 2019 to April 4, 2020.


Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/about/burden/preliminary-in-season-estimates.htm Images created by Gan Khoon Lay, Thuy Ghuyen, and Léa Lortal from the Noun Project.

Flattening the Curve

Effects of social distancing on 1918 flu deaths


Sources: "Public health interventions and epidemic intensity during the 1918 influenza pandemic" by Richard J. Hatchett, Carter E. Mecher, Marc Lipsitch, Proceedings of the National Academy of Sciences May, 2007. Data derived from "Public health interventions and epidemic intensity during the 1918 influenza pandemic" by Richard J. Hatchett, Carter E. Mecher, Marc Lipsitch, Proceedings of the National Academy of Sciences May, 2007.

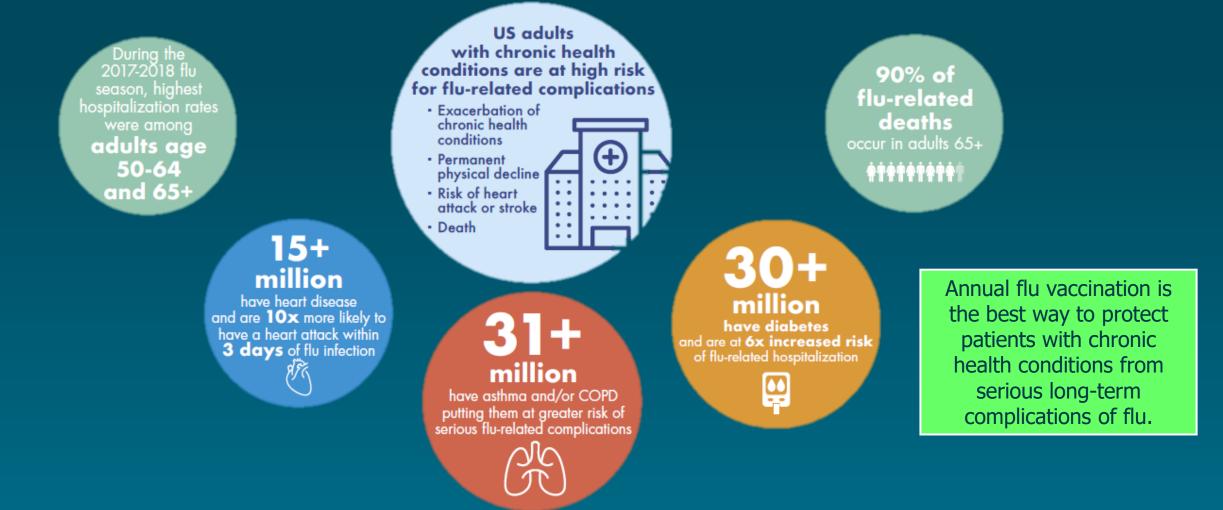
†These seasons did not have a week 53, so the week 53 value is an average of week 52 and week 1.

Centers for Disease Control and Prevention. Accessed January 16, 2021. https://www.cdc.gov/flu/weekly/index.htm#ILIActivityMap

2020-2021 Influenza Season

Centers for Disease Control and Prevention. Accessed January 16, 2021. https://www.cdc.gov/flu/weekly/index.htm#ILIActivityMap

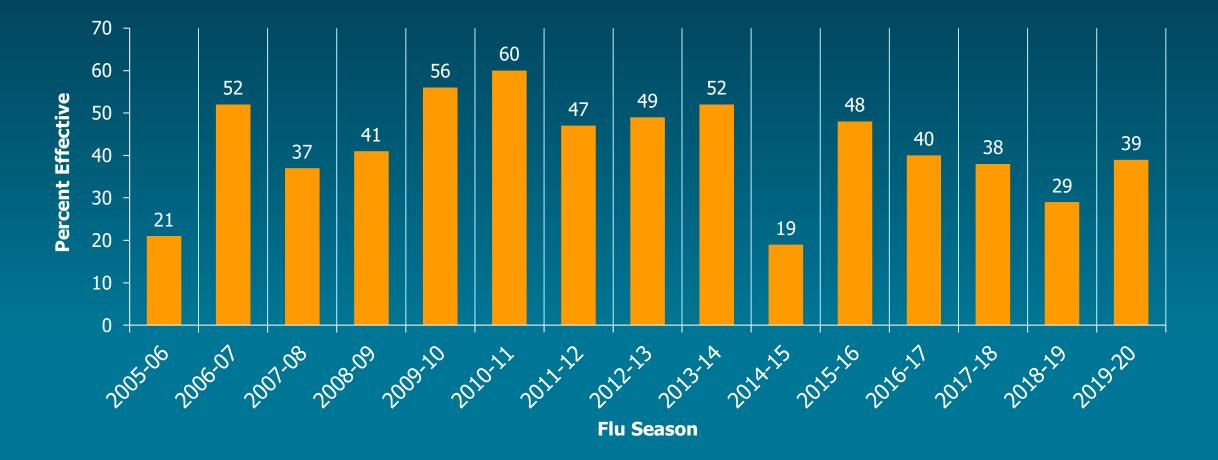
Incorporating Tools for Patient Assessment and Diagnostic Testing


Ruth Carrico, PhD, DNP, APRN, CIC, FSHEA, FNAP

Professor University of Louisville School of Medicine Division of Infectious Diseases *Louisville, KY*

Disclosures

- Consulting Fee: AstraZeneca, Pfizer, Sanofi Pasteur
 Contracted Perspectry Sanofi Pasteur
- Contracted Research: Sanofi Pasteur


Why Adults With Chronic Health Conditions Need to Get Vaccinated

National Foundation for Infectious Diseases (NFID). September 2018.

Accessed March 21, 2021. https://www.nfid.org/wp-content/uploads/2019/08/cta-dangers-of-influenza-in-adults-with-chronic-health-c.pdf

Effectiveness of Seasonal Flu Vaccines: 2008-2020 Flu Seasons

Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/vaccines-work/effectiveness-studies.htm Flannery B, et al. *J Infect Dis.* 2020;221(1):8-15.

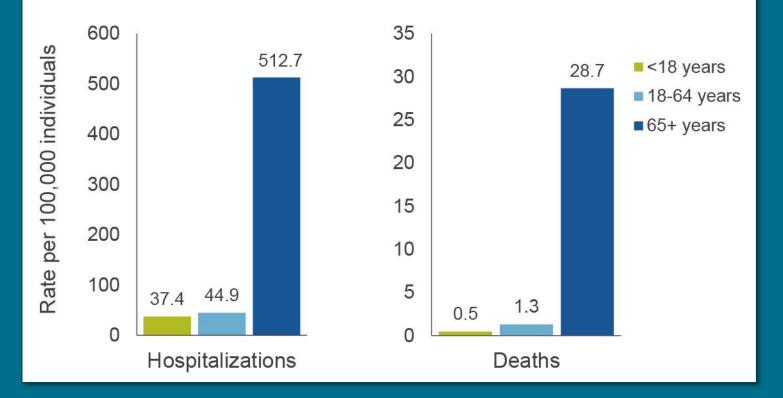
Vaccine Coverage – How Are We Doing?

	2013- 2014	2014- 2015	2015- 2016	2016- 2017	2017- 2018	2018- 2019	2019- 2020
6 months-4 years	70.4%	70.4%	70.0%	70.4%	67.8%	73.4%	75.5%
5-12 years	61.0%	61.8%	61.8%	59.9%	59.5%	63.6%	64.6%
13-17 years	46.4%	46.4%	46.8%	48.8%	47.4%	52.2%	53.3%
18-49 years with high-risk condition	38.7%	39.3%	39.5%	39.3%	31.3%	40.4%	44.4%
18-49 years without high-risk condition	31.1%	32.6%	31.5%	32.6%	26.1%	33.8%	37.5%
50-64 years	45.3%	47.0%	43.6%	45.4%	39.7%	47.3%	50.6%
65+ years	65.0%	66.7%	63.4%	65.3%	59.6%	68.1%	69.8%

Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/fluvaxview/

Factors Affecting the Burden of Influenza

• Burden of disease varies widely and determined by:

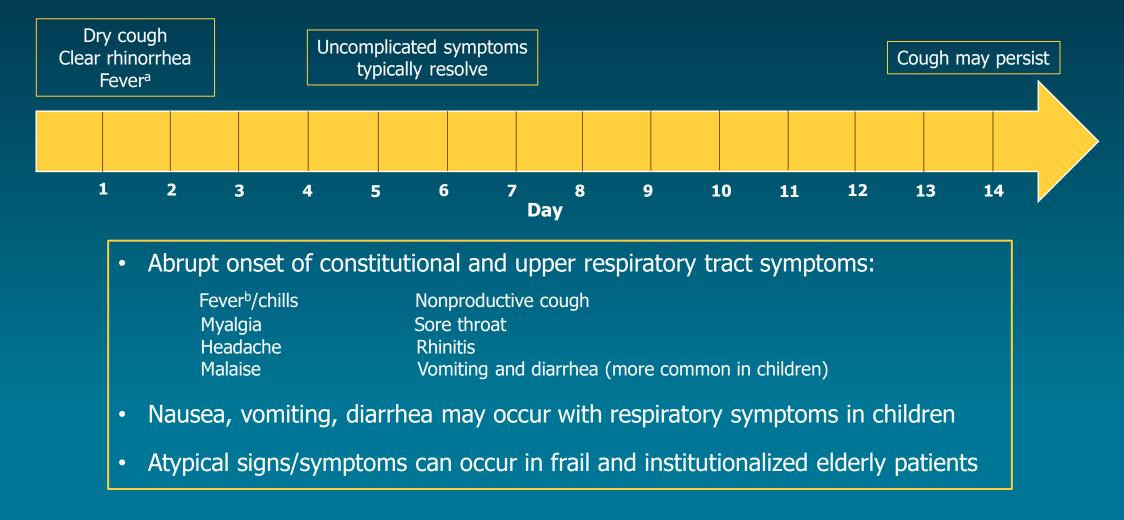

- Characteristics of circulating viruses
- Timing of the season
- Vaccine efficacy

(may be poor match for circulating strains in some years)

- How many people were vaccinated
- Social distancing/use of PPE

Burden of Flu Is Greater in Elderly Patients

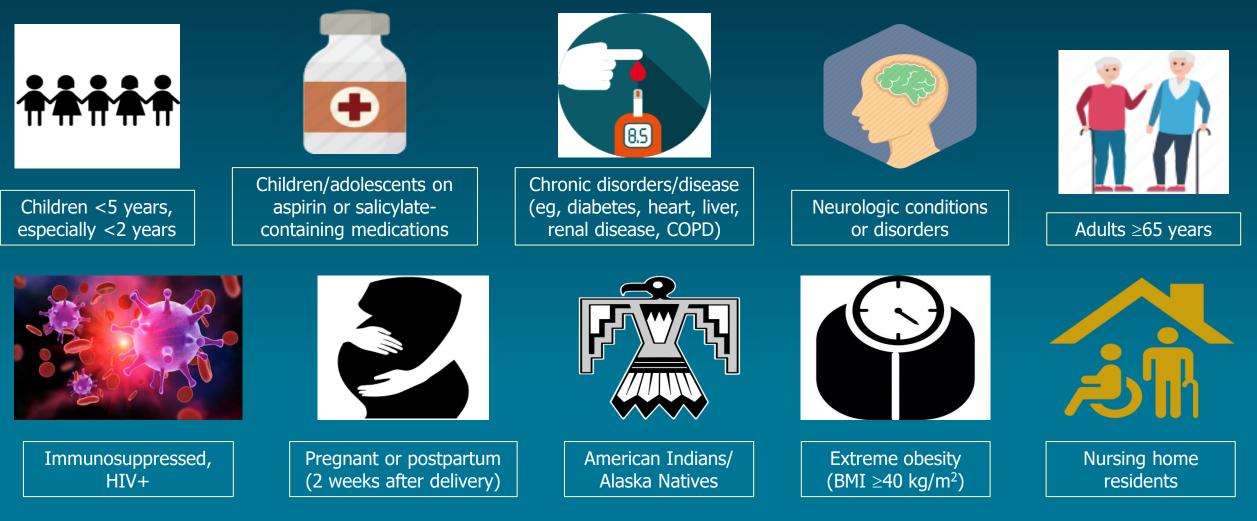
Average Rates of Hospitalization and Death From 2010-2011 Through 2012-2013 Flu Seasons^{1,a}


Older adults aged 65+ years accounted for 54% to 70% of hospitalizations and 73% to 85% of deaths depending on the season¹

\$1.3 billion in direct costs
among adults ≥65 years old
represents the largest share of
direct medical costs, primarily
due to the cost of hospitalization²

^aData shown are averaged across seasons (2010-2011, 2011-2012, and 2012-2013).

1. Reed C, et al. PLoS One. 2015;10(3):e0118369; 2. Putri WCWS, et al. Vaccine. 2018;36(27):3960-3966.


Influenza Clinical Course

^aIncreases to 104 °F within 12 hours, then decreases 0.5 to 1.0 °F/day. ^bElderly and immunosuppressed patients may not have fever.

Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/acip/clinical.htm

Populations at Higher Risk for Complications Attributable to Severe Influenza

BMI = body mass index; COPD = chronic obstructive pulmonary disease; HIV = human immunodeficiency virus. Grohskopf LA, et al. *MMWR Recomm Rep.* 2017;66(2):1-20; Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/highrisk/index.htm

Potential Complications of Influenza

DIRECT effects: Respiratory

Asthma, COPD exacerbations

Sinus Infection

Bronchitis and Pneumonia

INDIRECT effects: Multi-Organ Systems

TRIGGER for:

Acute Myocardial Infarction, Ischemic Heart Disease, and Cerebrovascular Disease

EXACERBATION of:

Renal Disorder and Diabetes

National Foundation for Infectious Diseases (NFID). September 2018. Accessed March 22, 2021. https://www.nfid.org/wp-content/uploads/2019/08/cta-dangers-of-influenza-in-adults-with-chronic-health-c.pdf

Influenza Diagnosis: Challenges and Opportunities

Challenges

- Signs and symptoms can vary with:
 - Age
 - Immune status
 - Underlying comorbidities
- Influenza immunization provides incomplete protection (although still very helpful)
 - 2019-2020 vaccine effectiveness ~45%
- Potential overlap of influenza, COVID-19, and pneumonia symptoms

Opportunities

- Timely influenza diagnosis can help to:
 - Decrease further unnecessary workups
 - Reduce unnecessary antibiotic use
 - Improve use of infection prevention measures
 - Increase appropriate use of antivirals

COVID-19 = coronavirus disease 2019. Uyeki TM, et al. *Clin Infect Dis*. 2019;68(6):e1-47; Rolfes MA, et al. *Clin Infect Dis*. 2019;69(11):1845-1853;

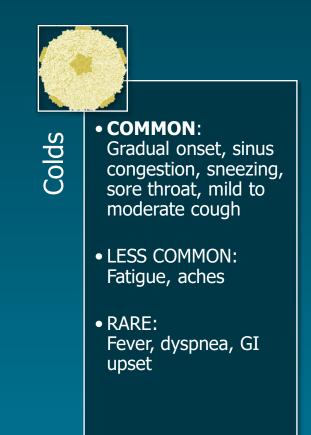
Dawood FS, et al. *MMWR Morb Mortal Wkly Rep.* 2020;69(7):177-182; Auwaerter PG. Accessed March 22, 2021. https://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540747/all/Coronavirus_COVID_19__SARS_CoV_2_; Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html

Symptoms of Co-circulating Respiratory Illnesses and Allergies

Influenza

• LESS COMMON: Sore throat, sinus congestion, gastrointestinal (GI) upset, dyspnea, sneezing

Abrupt onset, fever


(can be high grade),

body aches, fatigue,

cough, and headache

D-19*	 Fever, cough, shortness of to or difficulty breathing,

shortness of breath or difficulty breathing, chills, repeated shaking with chills, muscle pain, headache, sore throat, and new loss of taste or smell

Allergies

• **COMMON**: Rhinitis, sneezing, sinus congestion, mild cough, sore throat

• RARE/NEVER: Fever, dyspnea, body aches, GI upset

*Information is still evolving. Symptoms can vary and range from mild to severe.

IVOC

Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/symptoms/coldflu.htm Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html National Institute of Allergy and Infectious Diseases. Accessed March 22, 2021. https://www.niaid.nih.gov/diseases-conditions

Differentiating Influenza From COVID-19

nfluenza¹

- Transmission: Respiratory droplets, contaminated surfaces
- Incubation period: Mean 2 days, range 1 to 4 days
- Overall hospitalization rate: 2%
- Overall fatality rate: ~0.1%

- Transmission: Respiratory droplets, contaminated surfaces
- Incubation period: Mean 5-6 days, range 2 to 14 days²
- Hospitalization rate: 1.1% (ages 20–29 years) to 18.4% (ages \geq 80 years)³
- Estimated fatality rate^{3,4}:

★

VS

 \mathbf{O}

- Approximately 6 to 12× greater than seasonal influenza, but it has an extremely steep age gradient
- Current data suggest a range $(0.66\% \text{ to } >4\%)^{\dagger}$
- Children less symptomatic with infection and much less prone to severe illness²

To be determined...

- How common is asymptomatic infection and transmission?
- Rates of symptomatic infection/complication in the pediatric population?

*Information is rapidly evolving and subject to change. ⁺The case fatality rate is likely higher than seasonal influenza ($\leq 0.1\%$) but may be lower than initially reported ($\sim 2\%$ to 4%), epidemiology surveys are in progress. Results may vary in some countries, depending on health practices. Current estimates suggest COVID-19 is ~ 6 to 12 × worse than influenza with a steep age gradient.

1. Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/about/disease/spread.htm; 2. Auwaerter PG. Accessed March 22, 2021. https://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540747/all/Coronavirus_COVID_19__SARS_CoV_2_; 3. Verity R, et al. *Lancet Infect Dis.* 2020;20(6):669-677; 4. Johns Hopkins Coronavirus Resource Center. Accessed March 22, 2021. https://coronavirus.jhu.edu/map.html

Influenza Testing – RIDT

Rapid Influenza Diagnostic Tests (RIDTs):

- Office-based, point-of-care tests
- Immunochromatographic assays detect specific influenza viral antigens in a respiratory specimen
- Have inconsistent accuracy; historically, sensitivity has ranged from 10% to 80%, with specificity above 90%
- Meta-analysis¹ had pooled sensitivity of 62.3%; specificity was 98.2%
- Sensitivity was 13% higher in children
- In 2017, the FDA reclassified RIDTs to meet minimum specific criteria for sensitivity/specificity²
- FDA = US Food and Drug Administration.
- 1. Chartrand C, et al. Ann Intern Med. 2012;156(7):500-511.
- 2. Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/diagnosis/molecular-assays.htm

Influenza Rapid Molecular Assays

- Tests for nucleic acid
- Tests for influenza A or B
- Does not distinguish strain of influenza
- Results in 15 to 30 minutes
- High sensitivity
- High specificity

Influenza RT-PCR Testing

- RT-PCR is a highly sensitive, highly specific testing modality for detection of influenza A and B viral RNA in respiratory specimens:
 - Results may take 4 to 6 hours or more once testing is started; some of the newer cartridge-based RT-PCR assays can yield results in 60 to 80 minutes
 - RT-PCR can be useful as a confirmatory test and identify influenza virus types and influenza A virus subtypes
 - *Recommended* test by IDSA for hospitalized patients
- 3 multiplex RT-PCR assays target a panel of microorganisms multiplex respiratory pathogen panels range from narrow (targeting influenza A and B viral and RSV RNA) to broad (targeting more than a dozen respiratory viruses and other pathogens in respiratory specimens):
 - Turnaround times to results range from 1 to 8 hours
 - Multiplex assays are preferred for immunocompromised patients and may be useful for other hospitalized patients
 - Now available in combination with COVID testing

IDSA = Infectious Disease Society of America; RNA = ribonucleic acid; RSV = respiratory syncytial virus; RT-PCR = reverse transcription polymerase chain reaction. Uyeki TM, et al. *Clin Infect Dis.* 2019;68(6):e1-e47. Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/diagnosis/molecular-assays.htm

Office-based PCR Tests

- Real-time PCR testing
- Closed system
- CLIA-waived
- Less than 5 minutes of hands-on time; 20 minutes total
- Compared with routine PCR, sensitivity is 99.2% and specificity is 100%
- Other CLIA-waived, point-of-care FDA-cleared nucleic acid amplification tests:

 ID NOW:
 sensitivity 96.3%; specificity 97.4% (influenza A)
 sensitivity 100%; specificity 97.15% (influenza B)

 cobas Liat: sensitivity 100%; specificity 100%

CLIA = Clinical Laboratory Improvement Amendments; PCR = polymerase chain reaction. Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/diagnosis/molecular-assays.htm Binnicker MJ, et al. *J Clin Microbiol*. 2015;53(7):2353-2354; Nolte FS, et al. *J Clin Microbiol*. 2016;54(11):2753-2766. Abbott. ID NOW INFLUENZA A & B 2. Accessed March 22, 2021. https://www.globalpointofcare.abbott/en/product-details/id-now-influenza-ab-2.html

Available Influenza Diagnostic Tests

Type of Test	Acceptable Specimens	Time to Results	Sensitivity/ Specificity	
Rapid Influenza Diagnostic Test (RIDT)	NP swab, nasal swab, throat swab, aspirate or wash	10-15 minutes	Low to moderate sensitivity High specificity	
Rapid Molecular Assay (viral RNA detection or nucleic acid amplification tests)	NP swab, nasal swab	15-30 minutes	High sensitivity High specificity	Preferred for outpatient setting
Direct and indirect immunofluorescence assays	NP swab or wash, bronchial wash, nasal or endotracheal aspirate	1-4 hours	<u>Moderate</u> sensitivity High specificity	
Molecular assays (including RT-PCR)	NP or throat swab, NP or bronchial wash, nasal or endotracheal aspirate, sputum	1-8 hours	High sensitivity High specificity	Preferred for inpatient setting
Multiplex molecular assays	NP or throat swab, NP or bronchial wash, nasal or endotracheal aspirate, sputum	1-2 hours	High sensitivity High specificity	Inpatient use for
Rapid cell culture (shell vial and cell mixtures)	NP or throat swab, NP or bronchial wash, nasal or endotracheal aspirate, sputum	1-3 days	High sensitivity High specificity	immunocompromised patients or if results
Viral culture (tissue cell culture)	NP or throat swab, NP or bronchial wash, nasal or endotracheal aspirate, sputum	3-10 days	High sensitivity High specificity	might influence care

Grey text = Not recommended for hospitalized patients except when more sensitive molecular assays are not available; follow-up testing with RT-PCR or other molecular assays should be performed to confirm negative immunofluorescence test results.

NP = nasopharyngeal.

Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/diagnosis/table-testing-methods.htm Uyeki TM, et al. *Clin Infect Dis.* 2019;68(6):e1-e47.

Which Tests Should Be Used to Diagnose Influenza?

Guidelines from the Infectious Diseases Society of America

In *outpatients*, clinicians should use rapid molecular assays (ie, NAATs) over RIDTs to improve detection of influenza virus infection.

In *hospitalized patients*, clinicians should use RT-PCR or other molecular assays over other influenza tests to improve detection of influenza virus infection.

For initial or primary diagnosis of influenza, clinicians should *not* use viral cultures, because results will not be available in a timely manner to inform clinical management.

For diagnosis of influenza, clinicians should *not* use serologic testing, because results from a single serum specimen cannot be reliably interpreted.

NAAT = nucleic acid amplification test; RIDT = rapid influenza diagnostic test; RT-PCR = reverse transcription polymerase chain reaction. Infectious Diseases Society of America. Accessed March 22, 2021. https://www.idsociety.org/practice-guideline/influenza/ Uyeki TM, et al. *Clin Infect Dis.* 2019;68(6):e1-e47.

Influenza Prevalence and Predictive Value of Testing

Positive predictive value (PPV) = probability that patients with a positive screening test truly have the disease

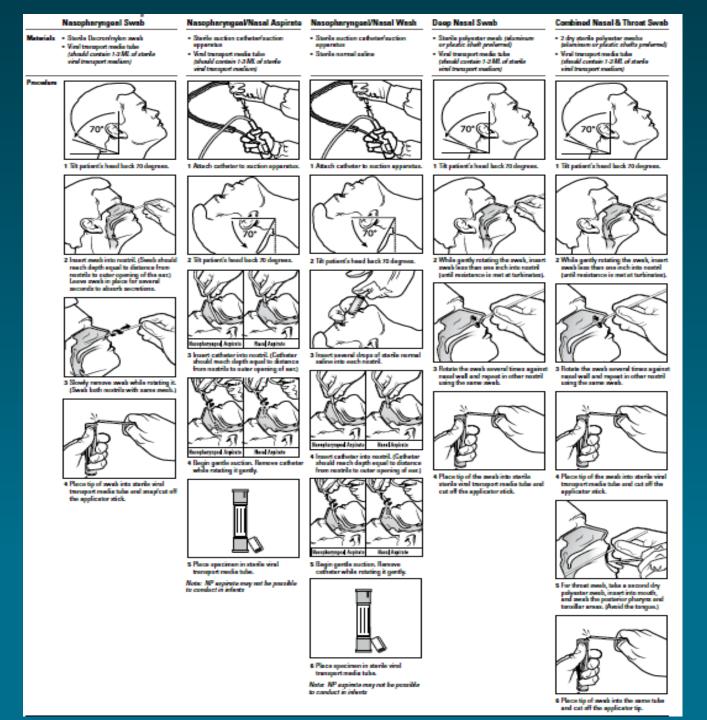
Negative predictive value (NPV) = probability that patients with a negative screening test truly do not have the disease PREVALENCE

When influenza prevalence is relatively low, the PPV is low and **false-positive test results more likely**

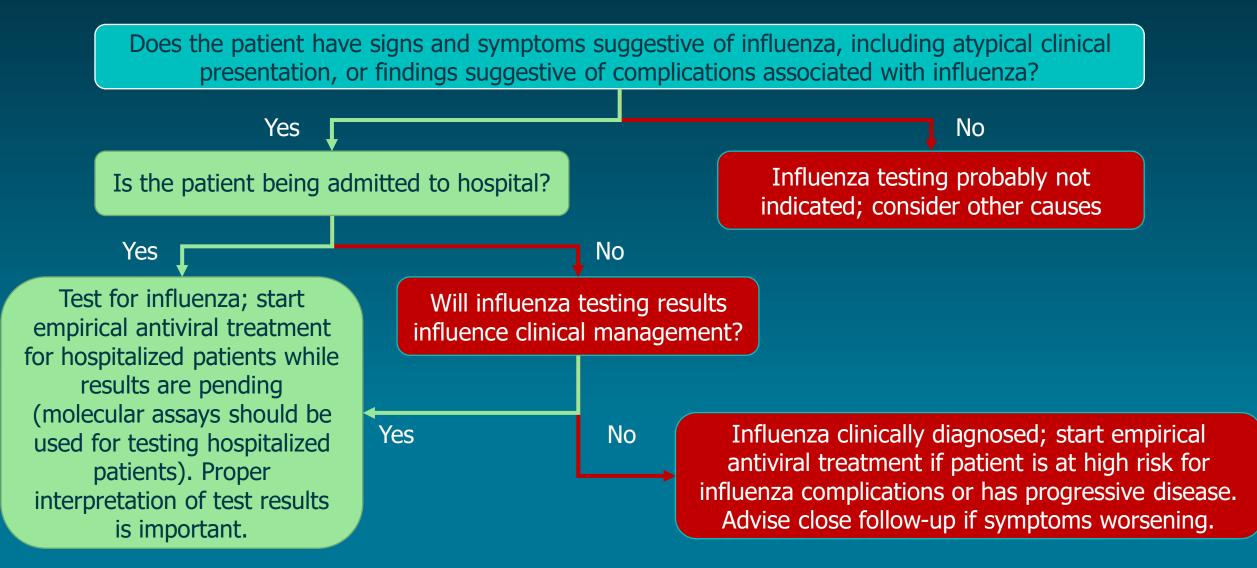
When influenza prevalence is low, the NPV is high and **negative results more likely to be true**

PREVALENCE

When influenza prevalence is relatively high, the NPV is low and **false-negative test results more likely**


When influenza prevalence is high, the PPV is high and **positive results more likely to be true**

Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/diagnosis/rapidlab.htm


Influenza Specimen Collection Techniques

 Centers for Disease Control and Prevention resources for specimen collection

Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/pdf/professionals/flu-specimen-collection -poster.pdf

Influenza Antiviral Treatment Guideline

Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm#summary

Case Discussion

Elyssa K. Rosenberg, MS, PA-C

Emergency Medicine Physician Assistant Abington-Jefferson Health *Abington, PA*

Disclosures

• No relevant financial relationships to disclose.

Case 1: Dawn

- 43-year-old woman with 3-day history of fever to 104 °F is sent to ED from primary care physician
- Mild nasal congestion, moderate myalgia, no dyspnea, no gastrointestinal symptoms, sense of taste and smell still intact
- Potential exposure to COVID-19—positive patient in the past week
- *Medical history:* non-contributory
- Vitals: Temperature 103.2 °F; BP 95/65 mm Hg bilaterally; pulse 103 beats/minute; RR 15/minute; O₂ saturation 89% room air
- Exam: Hyperemia of the oropharynx, otherwise unremarkable

Dawn

- Test for COVID-19/influenza is sent estimated turnaround: 2 days
- Other tests?
 - Chest x-ray?
 - Complete blood count?
 - Inflammatory markers?
 - Other viral molecular testing?
- Which treatment should be offered?

Dawn

- Patient is admitted to the hospital and given intravenous fluids, nasal oxygen, and a 5-day course of oseltamivir is started
- Combination flu/COVID RT-PCR test comes back positive for flu on day 2
- After 3 days, patient is discharged from the hospital when vital signs return to normal

Challenges in Flu Treatment

John J. Russell, MD, FAAFP

Clinical Professor of Family and Community Medicine Sidney Kimmel Medical College Thomas Jefferson University *Philadelphia, PA* Chair, Department of Family Medicine Program Director Family Medicine Residency Abington – Jefferson Health *Abington, PA*

Key Treatment Points: When Should Treatment Be Considered?

IDSA Guidelines

Criteria for *considering* **antiviral treatment^a:**

Outpatients with illness onset ≤ 2 days before presentation

Symptomatic outpatients who are household contacts of persons who are at high risk for complications from influenza, particularly those who are severely immunocompromised

Symptomatic health care providers who care for patients who are at high risk for complications from influenza, particularly those who are severely immunocompromised

^aRegardless of influenza vaccination history.

Guidelines are paraphrased from the article cited below.

IDSA = Infectious Diseases Society of America. Uyeki TM, et al. *Clin Infect Dis.* 2019;68(6):e1-e47.

Key Treatment Points: Who Should Be Treated for a Positive Influenza Test?

IDSA Guidelines

Criteria for initiating antiviral treatment as soon as possible^a:

Persons (any age) who are hospitalized with influenza, regardless of illness duration before hospitalization

Outpatients (any age) with severe or progressive illness, regardless of illness duration

Outpatients who are deemed at high risk for complications from influenza (ie, those with chronic medical conditions and immunocompromised patients)

Children aged <2 years and adults aged \geq 65 years of age

Pregnant women and those within 2 weeks postpartum

^aRegardless of influenza vaccination history.

Guidelines are paraphrased from the article cited below. For items indicated in parentheses, see Table 1 of the cited article for category, grade, and definition for ranking recommendations.

Uyeki TM, et al. *Clin Infect Dis.* 2019;68(6):e1-e47.

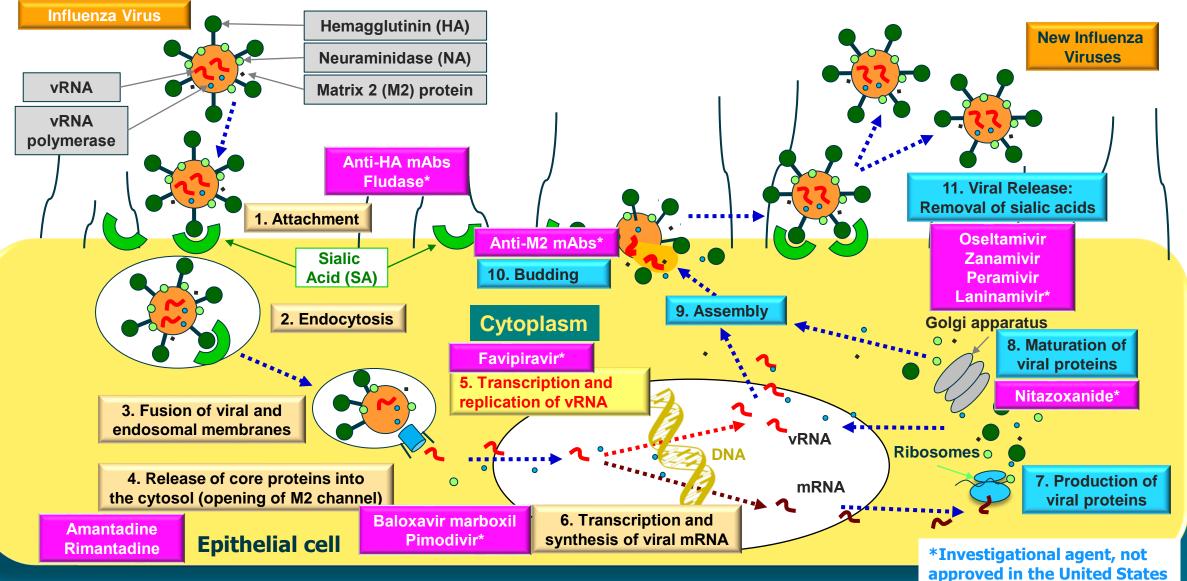
6 FDA-Approved Drugs for Influenza

• 4 recommended for influenza A + B:

- Neuraminidase inhibitors:
 - 1. Oseltamivir phosphate (oral)
 - 2. Zanamivir (inhaled)
 - 3. Peramivir (IV)
- Cap-dependent endonuclease inhibitor:
 - 4. Baloxavir marboxil (oral)

Not recommended:

- Adamantanes (M2 ion channel):
 - Amantadine
 - Rimantadine
 - High levels of drug resistance to circulating influenza A, ineffective for influenza B


Current FDA indications for recommended oral agents:

Oseltamivir: for treating influenza in patients ≥ 1 year who have been symptomatic for no more than 2 days, and for prophylaxis of influenza in patients ≥ 1 year

Baloxavir: for treating acute uncomplicated influenza within 2 days of illness onset in people \geq 12 years who are otherwise healthy, postexposure prophylaxis in people aged \geq 12 years, or at high risk for flu-related complications.

FDA = US Food and Drug Administration; IV = intravenous; M2 = matrix protein 2. Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm

Influenza: Lifecycle and Antiviral Mechanisms of Action

mAb = monoclonal antibody; mRNA = messenger RNA; vRNA = viral RNA.

Ramirez J. The University of Louisville Journal of Respiratory Infections. 2019;3(1):Article 9. https://ir.library.louisville.edu/jri/vol3/iss1/. Open Access.

FDA-Approved Drugs for Influenza Treatment

Antivirals	Mechanism of Action	Route of Administration	Dosing (Adults)
Neuraminidase inhibitors Oseltamivir phosphate Zanamivir Peramivir	Block viral neuraminidase enzyme; active against influenza A and B	Oral (capsules, suspension) Inhaled Intravenous	75 mg BID x 5 days 10 mg BID x 5 days 600 mg IV (1 dose)
Cap-dependent endonuclease inhibitor Baloxavir marboxil	Interferes with viral RNA transcription and blocks virus replication; active against influenza A and B	Intravenous600 mg IV (I dos40 to <80 kg (88 lb to <176 lb)	
Adamantanes Amantadine Rimantadine	Target M2 ion channel protein of influenza A viruses; active against influenza A, not B	As in past seasons, high levels of resistance (>99%) to adamantanes Not recommended for treatment or prophylaxis of influenza A	

BID = twice daily; IV = intravenous.

Baloxavir marboxil. Package insert. Genentech USA, Inc; 2020. Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm#overview

Side Effects of Available Antivirals

Drug	Si	de Effects
Oseltamivir		AEs: nausea, vomiting, headache Postmarketing reports: serious skin reactions, sporadic neuropsychiatric events ^a
Peramivir	•	AEs: diarrhea Postmarketing reports: serious skin reactions; sporadic, transient neuropsychiatric events ^a
Zanamivir		Allergic reactions: oropharyngeal or facial edema, skin rash AEs: risk for bronchospasm, especially in those with underlying airways disease; dizziness; ear, nose, and throat infections Postmarketing reports: sporadic, transient neuropsychiatric events ^a
Baloxavir	•	AEs: diarrhea, bronchitis, nasopharyngitis, headache, nausea

^aSelf-injury or delirium, mainly reported among Japanese adolescent and adults, may be due to the viral infection itself.

AEs = adverse events.

Centers for Disease Control and Prevention. Accessed March 22, 2021. www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm

Oseltamivir Trials: Ambulatory Patients

Study ¹	Characteristics	Time From Symptom Onset	Reduction in Length of Illness
Cooper et al ²	Healthy adults with laboratory-confirmed influenza	<48 hours	1.4 days
Treanor et al ³	Healthy adults with laboratory-confirmed influenza	<36 hours	1.3 days
Nicholson et al ⁴	Healthy adults with laboratory-confirmed influenza	24-36 hours	1-2 days
Aoki et al ⁵	Healthy patients (aged 12-70 years) with laboratory-confirmed influenza	0-6 hours	4.1 days
Aoki et al⁵	Healthy patients (aged 12-70 years) with laboratory-confirmed influenza	6-12 hours	3.1 days
Cooper et al, ² Kaiser et al ⁶	Elderly and high-risk patients with laboratory-confirmed influenza	36-48 hours	0.5 day ^a
Whitley et al ⁷	Children (1-12 years) with ILI (65% confirmed)	<48 hours	1.5 days ^b

^a34% reduction in antibiotic for LRTI; ^b44% reduction in otitis media.

ILI = influenza-like illness; LRTI = lower respiratory tract infection.

Adapted from Moscona A. N Engl J Med. 2005;353(13):1363-1373; 2. Cooper NJ, et al. BMJ. 2003;326(7401):1235; 3. Treanor JJ, et al. JAMA. 2000;283(8):1016-1024;
 Nicholson KG, et al. Lancet. 2000;355(9218):1845-1850; 5. Aoki FY, et al. J Antimicrob Chemother. 2003;51(1):123-129; 6. Kaiser L, et al. Arch Intern Med. 2003;163(14): 1667-1672; 7. Whitley RJ, et al. Pediatr Infect Dis J. 2001;20(2):127-133.

Meta-analysis of Oral Oseltamivir vs No Antiviral Therapy

Outcome	Number of Patients (Studies)	Pooled Odds Ratio (95% CI)
Mortality	681 (3)	0.23 (0.13-0.43)
Hospitalization	150,710 (4)	0.75 (0.66-0.89)
Otitis media	78,407 (2)	0.75 (0.64-0.87)
Pneumonia	150,466 (3)	0.83 (0.59-1.16)
Cardiovascular events	100,830 (2)	0.58 (0.31-1.10)
		<1.0: favors oseltamivir; >1.0 favors no antiviral

- Observational studies of hospitalized patients, no RCTs
- Studies of both seasonal influenza and pandemic influenza

Findings suggest that neuraminidase inhibitors decrease mortality

- Odds ratio 0.23 for oral oseltamivir (95% CI, 0.13-0.43)
- Mortality effect mostly derived from use in patients with <3 days of symptoms
- Low-quality evidence and many unmeasured confounders

Oseltamivir vs Placebo: Meta-analysis Findings

• Oseltamivir was associated with about a 1-day improvement in clinical symptoms

Key On-treatment AEs

Adverse Event	Oseltamivir (n=2401)	Placebo (n=1917)	<i>P</i> value	Risk Difference (95% CI)
Gastrointestinal disorders	574	370	.0019	4.0% (1.4 to 6.9)
Nausea	247	118	<.0001	3.7% (1.8 to 6.1)
Vomiting	201	63	<.0001	4.7% (2.7 to 7.3)
Diarrhea	147	147	.016	-1.9% (-3.1 to -0.4)
Neurological disorders	124	93	.97	-0.3% (-1.7 to 1.6)
Psychiatric disorders	11	13	.27	-0.1% (-0.5 to 0.7)

Oseltamivir in Hospitalized Population

- 5 years of patient-level data from 1 urban center (N=699)
- Only 26% were treated with oseltamivir empirically (within 6 hours)
- Median time to first dose: 17.9 hours
- Early NAI was associated with shorter length of hospital stay (P<.001)
- No patients died in the early NAI group, compared with 18 deaths in the 399 patients receiving NAI after 6 hours (4.5%) and 4 deaths in the 116 patients not receiving NAI (3.4%)

Efficacy and Safety of Oseltamivir in Children

- Systematic review identified RCTs of oseltamivir in children
 - Examined protocol-defined outcomes based on individual patient data
 - 2-stage, random-effects meta-analysis conducted to determine efficacy of treatment in reducing duration of illness (differences in RMST by treatment group)
- Data from 5 trials included
 - ITT: N=2561; ITT infected (ITTI): N=1598

Findings:

- Oseltamivir significantly reduced duration of illness in the ITTI population
 - RMST difference -17.6 hours (95% CI, -34.7 to -0.62)
 - Reduction larger in trials that enrolled patients without asthma -29.9 hours (95% CI, -53.9 to -5.8)
- Risk for otitis media 34% lower in ITTI population
- Vomiting was the only AE with significantly higher risk in treatment group

Other NAIs: Peramivir

- Parenteral agent
 - Single dose
- FDA approved for uncomplicated influenza,
 <48 hours from symptom onset
- Mostly used off-label:
 - ICU
 - Lack of GI absorption

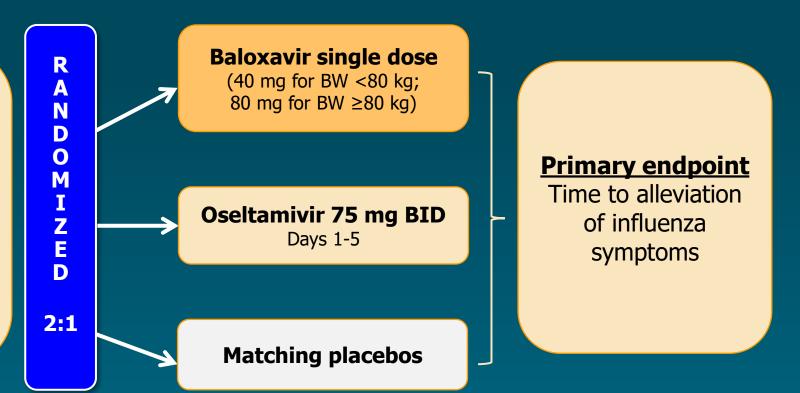
RCT of Peramivir

N=398 hospitalized patients

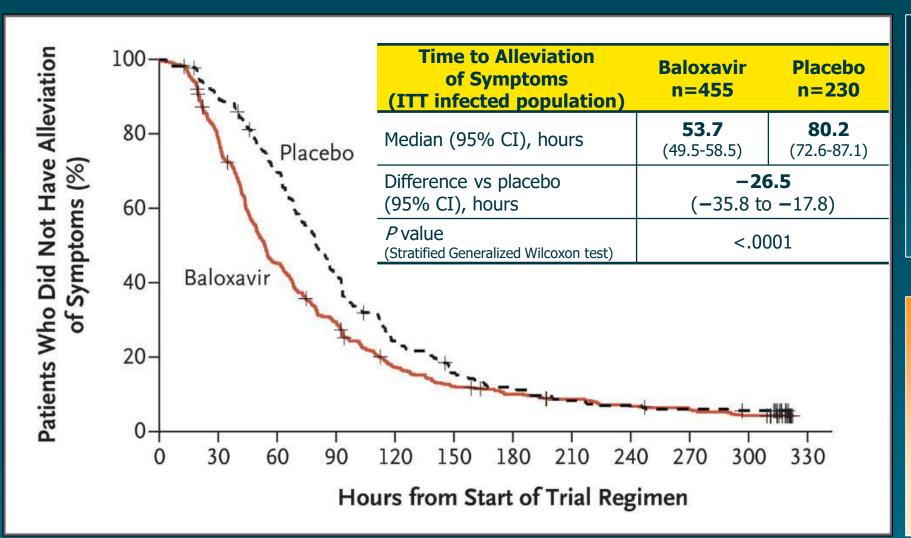
Over half were >48 hours from symptom onset

Peramivir + SOC vs placebo + SOC

 The primary efficacy analysis included 121 patients who did not receive a concurrent NAI as part of the SOC


Endpoints: median time to clinical resolution and change in viral shedding

No significant clinical benefit demonstrated for peramivir + SOC compared with placebo + SOC


Baloxavir: CAPSTONE-1 Study

Phase 3, randomized, double-blind, placebo- and oseltamivir-controlled study:

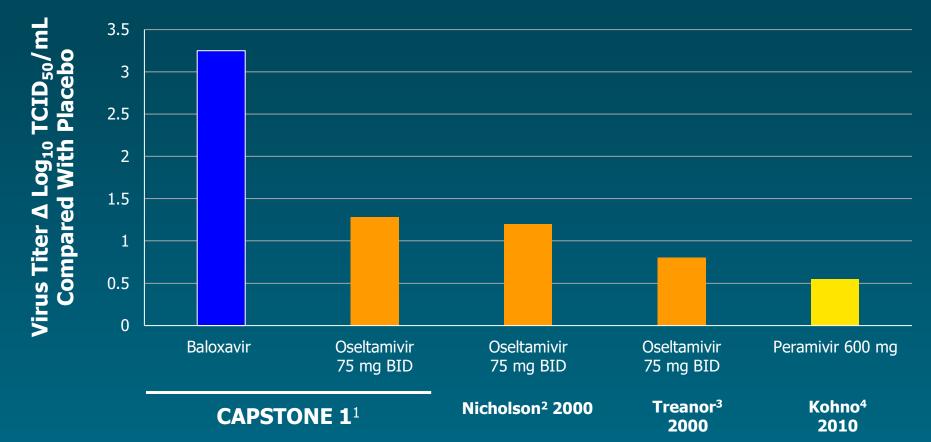
- Outpatients 12-54 years old
- Patients 12-19 years randomly assigned to baloxavir or placebo (day 1 only)
- 1436 randomized; 1064 intention-to-treat population

CAPSTONE-1: Baloxavir for Uncomplicated Influenza

 Baloxavir significantly reduced duration of fever by ~1 day versus placebo (median time: 24.5 hours versus 42 hours; *P*<.0001)

 Median time to alleviation of symptoms was similar for baloxavir and oseltamivir (~54 hours)

Overall incidence of AEs:

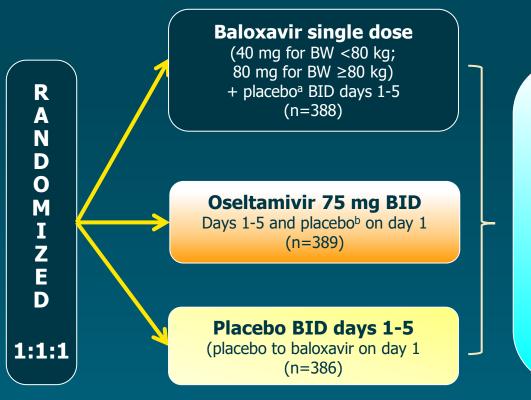

- **Baloxavir:** 20.7%
- **Oseltamivir:** 24.8%
- **Placebo:** 24.6%

Baloxavir has a similar overall AE incidence, with a potentially lower rate of nausea and vomiting than oseltamivir

AE = adverse event; ITT = intent-to-treat. From Hayden FG, et al. *N Engl J Med.* 2018;379(10):913-923. Copyright © 2018 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

Baloxavir CAPSTONE-1 Study

Virus titer change from baseline after 1 day of dosing $(\Delta \log_{10} TCID_{50}/mL minus \Delta placebo)$


TCID = median tissue culture infectious dose.

- 1. Hayden FG, et al. *N Engl J Med*. 2018;379(10):913-923.
- 2. Nicholson KG, et al. Lancet. 2000;355(9218):1845-1850.
- 3. Treanor JJ, et al. JAMA. 2000;283(8):1016-1024.
- 4. Kohno S, et al. Antimicrob Agents Chemother. 2010;54(11):4568-4574.

Baloxavir CAPSTONE-2 Design

Phase 3, multicenter, randomized, double-blind, placebo- and oseltamivircontrolled study:

- Patients with influenza at <u>higher</u> <u>risk for influenza complications</u>
- Inclusion criteria:
 - \circ Age ≥12 years
 - \circ Fever + influenza symptoms of ≤48 hours duration
 - Presence of at least 1 higher risk factor (from CDC criteria)
- 38%-44% of patients had influenza B; 56%-62% had influenza A

Primary endpoint

Time to improvement of influenza symptoms (TTIIS)

Secondary endpoints

- Infectious virus detection in serial nasopharyngeal swabs
- Prescription of antibiotics
- Influenza-related complications

High-risk factors: Asthma or chronic lung disease (39.2%), age ≥65 years (27.4%), endocrine disorders (32.8%), metabolic disorders (13.5%), heart disease (12.7%), morbid obesity (10.6%)

^aPlacebo to oseltamivir; ^bPlacebo to baloxavir

BID = twice daily; BW = body weight.

Ison MG, et al. Presented at: Infectious Disease Week (IDWeek) 2018; October 3-7, 2018; San Francisco, CA. Abstract #LB16; ClinicalTrials.gov. Accessed March 22, 2021. https://clinicaltrials.gov/ct2/show/NCT02949011; Ison MG, et al. *Lancet Infect Dis.* 2020;20(10):1204-1214; Baloxavir marboxil. Package insert. Genentech USA, Inc. 2020.

CAPSTONE-2: Baloxavir Marboxil in High-risk Adults

	CAPSTONE-2 Outcomes (1163 patients)
Time to clinical recovery	Reduced time to clinical recovery for:
	 Baloxavir vs placebo (73.2 vs 102.3 hrs; P<.0001); difference of 29.1 hours
	 Baloxavir for influenza A vs placebo (75.4 vs 100.4 hours; P=.014)
	 Baloxavir for influenza B vs placebo (74.6 vs 100.6 hours; P=.0138)
	• Baloxavir for influenza B vs oseltamivir (74.6 vs 101.6 hours; <i>P</i> =.0251)
	Similar time to clinical recovery:
	 Baloxavir for influenza A vs oseltamivir (75.4 vs 68.2 hours; P=NS)
Viral shedding	Reduced in patients who received baloxavir vs oseltamivir or placebo (48 vs 96 and 96, respectively; P <.0001)
Influenza-related complications	Treatment with either baloxavir or oseltamivir was associated with reduced risk for complications compared with placebo
Safety	Similar incidence of AEs for baloxavir (25.1%) versus placebo (29.7%) or oseltamivir (28.0%)

FDA approved a supplemental New Drug Application for baloxavir marboxil for the treatment of acute, uncomplicated influenza, or flu, in people 12 years of age and older who have been symptomatic for no more than 48 hours and *who are at high risk for flu-related complications*. (October 2019)

NS = not significant.

ClinicalTrials.gov. Accessed March 22, 2021. https://clinicaltrials.gov/ct2/show/NCT02949011; Ison M, et al. Presented at: IDWeek 2018; October 3-7, 2018; San Francisco. CA. Abstract #LB16; Ison MG, et al. *Lancet Infect Dis.* 2020;20(10):1204-1214; Baloxavir marboxil [Approval letter]. October 16, 2019. Accessed March 22, 2021. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/210854Orig1s001.pdf

FLAGSTONE: Baloxavir + NAI in Hospitalized Patients With Severe Influenza

Study Characteristics				
Trial Design:	Phase 3, multicenter, double-blind, placebo-controlled trial			
Participants:	Hospitalized patients at least 12 years of age with severe influenza N=366, Participants randomized 2:1 to receive baloxavir or matching placebo			
Treatment Groups:	 Baloxavir + NAI (n=208) Weight-based dose of baloxavir given on days 1, 4, and 7 (if no improvement by day 5) NAI therapy given in accordance with local practice (at least 5 days) Placebo + NAI (n=144) Matching placebo NAI therapy given in accordance with local practice (at least 5 days) 			
Outcome Measures:	 Primary: time to clinical improvement Time to hospital discharge OR Time to NEWS2 (National Early Warning Score 2) of ≤2 maintained for 24 hours Secondary: AEs; ICU stay/duration; mechanical ventilation (need/duration); time to discharge; viral shedding; mortality; etc. 			

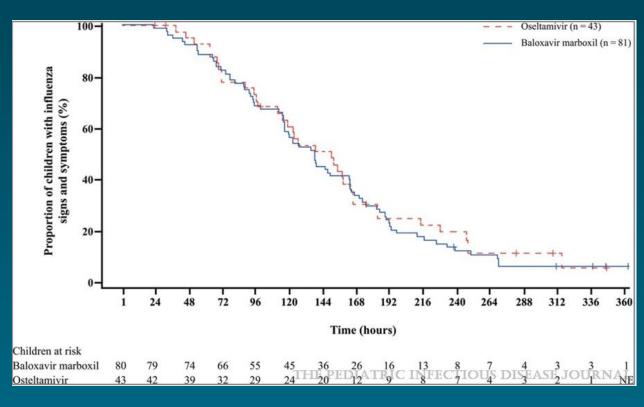
FLAGSTONE: Baloxavir + NAI in Hospitalized Patients With Severe Influenza

Baseline characteristics were balanced in the baloxavir plus
 NAI versus placebo plus NAI

	Baloxavir + NAI	Placebo + NAI	<i>P</i> value
TTCI	97.5 hours (75.9 – 117.2)	100.2 hours (75.9 – 144.4)	.4666
Median time to cessation of viral shedding	23.9 hours	63.7 hours	.0001
≥1 AE	45.2%	50.0%	
Serious AEs	12.1%	15.3%	

TTCI = time to clinical improvement. ClinicalTrials.gov. Accessed March 22, 2021. https://clinicaltrials.gov/ct2/show/NCT03684044 Kumar D, et al. Presented at The Seventh European Scientific Working Group on Influenza (ESWI) Virtual Conference; December 6-9, 2020.

MINISTONE-2: Time to Alleviation of Influenza Symptoms in Children—Baloxavir vs Oseltamivir


- Phase 3 RCT among healthy children ill <48 hours; aged 1 to 12 years
- Baloxavir single dose: 2 mg/kg if <20 kg, 40 mg if ≥20 kg vs oseltamivir BID x 5 days; weight-based dosing
- Randomized 2:1, N=112/57; 81/54 with confirmed influenza
- Primary endpoint was met: similar safety between baloxavir and oseltamivir

	Baloxavir (hours, 95% CI)	Oseltamivir (hours, 95% CI)
Time to alleviation of symptoms	138 (117-163)	150 (115-165)
Time to culture negativity	24.2 (23.5-24.6)	75.8 (68.9-97.8)

 sNDA submitted for baloxavir for treating acute uncomplicated influenza in children between 1 and 12 years of age within 48 hours of symptom onset

NDA submitted for new oral suspension formulation of baloxavir (2 mg/mL)

BID = twice daily; NDA = new drug application; sNDA = supplemental NDA. Baker J, et al. *Pediatr Infect Dis J*. 2020;39(8):700-705. Open Access. Time to Alleviation of Signs and Symptoms: Similar Between Study Arms

Resistance to Baloxavir: PA-I38X Emergence

Proportions of PA-I38X variant emergence	Total	Virus type/subtype		
		A/H1N1	A/H3N2	В
Phase 2 in Japan ¹	2.2%	3.6%	0%	0%
	4/182	4/112	0/14	0/56
CAPSTONE-1 ²	9.7%	0%	10.9%	2.7%
	36/370	0/4	35/330	1/37
Pediatric Study in Japan ³	23.4%	0%	25.7%	0%
	18/77	0/2	18/70	0/6
CAPSTONE-2 ⁴	5.2%	5.6%	9.2%	0.8%
	15/290	1/18	13/141	1/131

1. Uehara T, et al. *J Infect Dis.* 2020;221(3):346-355; 2. Hayden FG, et al. *N Engl J Med.* 2018;379(10):913-923; 3. Hirotsu N, et al. *Clin Infect Dis.* 2020;71(4):971-981; 4. Ison GM, et al. *Lancet Infect Dis.* 2020;20:1204-1214.

Chemoprophylaxis

- The CDC does *not* recommend routine use
 - Exceptions include:
 - High-risk persons in the first 2 weeks postimmunization
 - Unvaccinated high-risk persons or those with expected poor response (immunosuppressed)
- Not recommended if \geq 48 hours after exposure
- The CDC and the American Academy of Pediatrics recommend oseltamivir for prophylaxis in infants aged ≥3 months and older
- Oseltamivir has efficacy of 69% to 92% in preventing influenza

CDC = Centers for Disease Control and Prevention.

Centers for Disease Control and Prevention. Updated August 10, 2020. Accessed January 15, 2021. https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm; Carey WA, et al. *Pediatrics*. 2018;141(3):e20173108; Moscona A. *N Engl J Med*. 2005;353(13):1363-1373.

Prophylaxis: Oseltamivir and Zanamivir

Systematic review of data on NAIs for prophylaxis of influenza¹

Studies examining secondary transmission of **symptomatic** influenza

- Jackson et al, 2011²
- Jefferson et al, 2014³
- Khazeni et al, 2009⁴
- Okoli et al, 2014⁵

Studies examining secondary transmission of **asymptomatic** influenza

- Jefferson et al, 2014³
- Khazeni et al, 2009⁴

Data were classified by **pre-exposure prophylaxis**, **post-exposure prophylaxis**

Findings

In situations of pre-exposure and post-exposure prophylaxis, oseltamivir or zanamivir consistently and significantly lowered the odds or risk of symptomatic influenza

For asymptomatic influenza: Prophylaxis with either oseltamivir or zanamivir did not reduce the odds or risk of secondary transmission

1. Doll MK, et al. *J Antimicrob Chemother*. 2017;72(11):2990-3007; 2. Jackson RJ, et al. *J Infect*. 2011;62(1):14-25; 3. Jefferson T, et al. *Cochrane Database Syst Rev*. 2014;2014(4):CD008965; 4. Khazeni N, et al. *Ann Intern Med*. 2009;151(7):464-473; 5. Okoli GN, et al. *PLoS One*. 2014;9(12):e113633.

Neuraminidase Inhibitors Reduce Influenza by 69% to 92%

- Several large, controlled studies of prophylaxis showed that zanamivir and oseltamivir are effective in preventing clinical influenza in healthy adults:
 - Prophylaxis after exposure for close contacts, such as household members
 - Seasonal prophylaxis in the community
- Both oseltamivir and zanamivir were ~70% to 90% effective in reducing incidence of influenza when used for prophylaxis before or after exposure to influenza A or influenza B

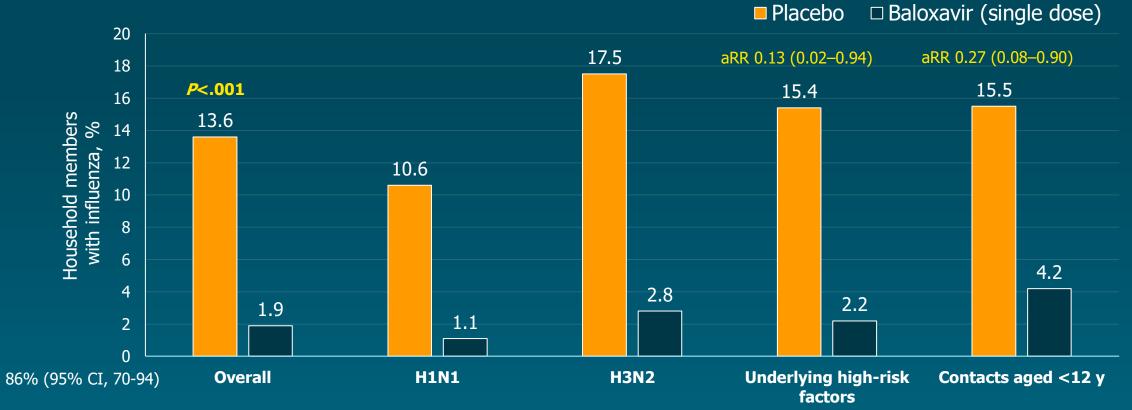
BLOCKSTONE: Baloxavir Prophylaxis in Households

-	
	$\overline{}$
	ي الح
	$-\mathbf{O}$

Study of baloxavir prophylactic efficacy among HHCs with influenza

	_	

Multicenter, double-blind, placebocontrolled study of HHCs in Japan during the 2018-2019 season


- All index patients were treated
- Asymptomatic HHCs randomized to baloxavir or placebo

Endpoint: Proportion of HHCs who developed clinical influenza over a 10-day observation period

HHCs = household contacts. Ikematsu H, et al. *N Engl J Med.* 2020;383(4):309-320.

BLOCKSTONE: Preventative Treatment With Baloxavir After Exposure to an Infected Household Member

• Baloxavir had a comparable safety profile to placebo (adverse events: 22.2% with baloxavir, 20.5% with placebo)

• November 2020: Baloxavir is FDA-approved for postexposure prophylaxis in patients 12 years and older

aRR = adjusted risk ratio. Ikematsu H, et al. *N Engl J Med.* 2020;383(4):309-320.

Antiviral Chemoprophylaxis

Antiviral	Indication	Age	Routine Duration ¹	Dosing
Baloxavir ^{2,3}	Yes	≥12 years	Single dose	 <80 kg: Two 20 mg tablets taken at the same time for a total single dose of 40 mg (blister card contains two 20 mg tablets) ≥80 kg: Two 40 mg tablets taken at the same time for a total single dose of 80 mg (blister card contains two 40 mg tablets)
Oseltamivir	Yes	≥3 months	7 days	Adults: 75 mg orally once daily Children 3 months to <1 year old: • 3 mg/kg/dose once daily Children >1 year old: • 15 kg or less: 30 mg once daily • >15 to 23 kg: 45 mg once daily • >23 to 40 kg: 60 mg once daily • >40 kg: 75 mg once daily
Peramivir			Chem	oprophylaxis not recommended
Zanamivir	Yes	≥5 years	7 days	Adults and children: 10 mg (two 5-mg inhalations daily)

See CDC guidance for special institutionalized settings with an outbreak.⁴

1. Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm;

2. Ikematsu H, et al. N Engl J Med. 2020;383(4):309-320; 3. Baloxavir marboxil. Package insert. Genentech USA, Inc. 2020;

4. Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/infectioncontrol/ltc-facility-guidance.htm

Treatment of Community-acquired Pneumonia (CAP) Considerations

• Should patients with CAP diagnosed with influenza get antibacterial treatment?

– Yes

- If nonsevere, β-lactam + macrolide OR respiratory fluoroquinolone
 If no risk factors for MRSA or *Pseudomonas aeruginosa*
- Should patients with CAP receive antivirals for influenza?
 - Yes (strong recommendation, moderate quality of evidence)

MRSA = methicillin-resistant *Staphylococcus aureus.* Centers for Disease Control and Prevention. Accessed March 22, 2021. https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm Metaly JP, et al. *Am J Respir Crit Care Med.* 2019;200(7):e45-e67. Uyeki TM, et al. *Clin Infect Dis.* 2018;68(6):e1-e47.

Treatment: Key Take-home Points

- Start therapy early for best outcomes
- Antiviral treatment for influenza recommended within 48 hours of symptom onset
 - Shorter duration of clinical illness
 - Fewer complications and need for antibiotics
 - Reduced mortality and length of stay for hospitalized patients
- Newer therapies and new indications are on the horizon

Case Discussion

Elyssa K. Rosenberg, MS, PA-C

Emergency Medicine Physician Assistant Abington-Jefferson Health *Abington, PA*

Case 2: Roger

- Patient is a 44-year-old male who is HIV+, who presents to outpatient clinic with 12 hours of fever, chills, and muscle aches
- Reports being at a party recently where a few people "were getting over the flu"
- Did not get the flu vaccine this year
- Current medications include triple therapy consisting of dolutegravir + abacavir + lamivudine

Roger

- HIV infection diagnosed at age 32 years
- Has family history of severe obesity; body mass index is 41 kg/m²
- No known drug allergies
- Medications also include lisinopril for hypertension
- Lives with husband, also HIV+ and on the same triple therapy

Roger

- Vital signs: pulse 88 beats/minute; BP 130/88 mm Hg bilaterally; RR 16/minute; O₂ saturation 96%; temperature 102.8 °F; weight 100 kg
- Nontoxic appearing, no respiratory distress
- Tympanic membranes clear, pharynx clear, has some nasal congestion
- Heartbeat regular, without murmur
- Lungs clear to auscultation bilaterally
- Abdomen: positive bowel sounds, nontender, no masses
- No edema

Roger

- Results of in-office testing are positive for influenza B.
- The husband has not been vaccinated this flu season.
- Treatment options such as baloxavir and oseltamivir were discussed for the patient and his husband.