Surgical Skills Lab for Fracture Fixation: Internal Fixation and Lag Screws

Christopher V. Bensen, M.D.

A PA's Guide to the Musculoskeletal Galaxy June 24-26, 2021 Virtual

Disclosures

- Partner, Keys Medical Group
 - Key West, Florida
- No corporate affiliation, interests, or royalties
- bensencv@gmail.com
- 828-773-9227

Objectives of Breakout

- Review options for managing fractures
- Review bone anatomy and healing
- Indications for internal fixation
- Techniques
 - Lag screws
 - Compression and Locking Plates
- Understanding principles allows better assistance and participation during cases

Bony Anatomy

Long Bones
 * Epiphysis
 * Metaphysis
 * Epiphysis

Bony Anatomy

- Cortical Bone
- Cancellous (Spongy) bone

Cortical Bone

- Shell around most all bones
- Diaphyseal
- Compact and dense
- Very strong

Cancellous Bone

- Less dense
- Metaphyseal
- 25% mass and 10% strength of cortical bone

Methods of Fracture Management

- Nothing!
- Splints
- Casts
- Percutaneous Pinning
- External Fixation
- Internal Fixation
 Plates/screws
 Nails
 Wiring

Internal Fixation

- Developed in Switzerland in 1940s
- Poor outcomes and disabilities from war injuries, MVAs, and skiing accidents
- Arbeitsgemeinschaft fur Osteosynthesfragen (AO)
- Association for the Study of Internal Fixation (ASIF)

Principles of Internal Fixation

- Anatomic reduction of fractures
- Stable internal fixation
- Preservation of blood supply
- Early motion to improve rehab
- Reduce "fracture disease"

Fractures

- Overload of force greater than bone can withstand
- Loss of continuity and support
- Associated soft tissue damage
- Loss of blood supply
- Types and patterns result from various forces
- Each fracture pattern requires different implants

Bone Healing

- How bone heals depends on stability and motion
 Indirect

 - Direct

Indirect Bone Healing

- Relative stability
- Some motion between fragments
- Callus formation

Fracture Callus

Indirect Bone Healing

- Examples:
 - Splints
 - Casts
 - Intramedullary nails
 - External fixation

Externa fixation

Direct Bone Healing

- Absolute stability
- Direct contact between fracture fragments
- Minimal or no motion between fragments
- No callus formation

Direct Bone Healing

Examples:
 Compression plates
 Lag screws

Indications for Internal Fixation

- Should be considered if conservative management will result in disability or less than optimal outcomes.
- Benefits > Risks
- Open fractures
- Displaced and unstable fractures
- Most intraarticular fractures
- Most diaphyseal femur fractures
- Some other diaphyseal fractures
- NV Injury

Prerequisites for Internal Fixation

- Knowledge of anatomy and techniques required
- Trained surgeon and personnel
- Appropriate implants

Potential Benefits of Internal Fixation

- Anatomic reduction
- Stable fixation
- Earlier motion
- More predictable fracture alignment
- Potentially faster time to healing

Screws

Cortical Screws

- Greater number of threads
- Smaller pitch (threads closer together)
- Lower outer thread:core diameter ratio
- Cancellous Screws
 - Fewer threads
 - Larger pitch
 - Higher thread:core ratio

Figure 1: Four-mm outer-diameter cortical (left

- Used to compress fracture fragments
- Compress plates on bone
- Threads engage far cortex
- Can use:
 - Partially threaded cancellous screws
 - Cortical screws

- Reduce fracture
- Drill near cortex with bit that is the same diameter as the outer diameter of screw

- Drill far cortex with bit that is the same diameter as the inner (core) diameter of screw
- Can use drill guide as centering device

- Countersink near cortex
- Head of screw sits flush; not prominent
- Allows distribution of compression forces

- Use depth gauge to determine length of screw
- Measure off obtuse side of far cortex

- Place appropriate screw
- Remove reduction forceps

- Place appropriate screw
- Remove reduction forceps
- Remember to place lag screws as close to perpendicular to fracture as possible

- Place appropriate screw
- Remove reduction forceps
- Remember to place lag screws as close to perpendicular to fracture as possible
- Maximizes compression forces

Neutralization Plating

- Neutralizes forces on lag screws
- Protects from shear, bending, and rotational forces
- Acts as a bridge

FIGURE 4-19 Neutralization plate. **A**, Interfragmentary screw fixation without a neutralization plate. **B**, Interfragmentary screw fixation without a neutralization plate in a loaded position, resulting in construct failure. **C**, Interfragmentary screw fixation with a neutralization plate effectively resisting an external load.

Buttress (Antiglide) Plating

- Resists shear forces during axial loading
- Protect weakened areas of cortex
- Often used in metaphyseal section for intraarticular fractures
- Reduces risk of sliding/ collapse during healing

Compression Plating

- Compression is fundamental to healing
- Decreases fracture gap
- Maintains position and stability through physiologic forces

Compression Plating

- Reduce and compress transverse or short oblique fractures
- Prebending plate converts to compressive forces
- Dynamic compression with oval holes and eccentric screw placement

Compression Plating

Prebending Plate

Locking Plates

- Screw heads are threaded
- Lock into plate
- Fixed angle device
- Improves axial stability
- Reduces risk of implant failure

Combined LCDC Locking Plates

Specialty Plates

Take Home Points

- Numerous options for managing fractures
- Internal fixation offers advantages
- Many different plate/screw options available
- Advancing tehnology
- Understanding of basic biomechanical principles
- Improve capabilities

Thank You! bensencv@gmail.com 828-773-9227