NEW YORK INSTITUTE OF TECHNOLOGY

FODMAPS- Who, What, When, Where, How & Why

Corri Wolf, PA-C, MS, RD Assistant Chair & Academic Coordinator Department of PA Studies New York Institute of Technology

Disclosures

• None

Learning Objectives

NEW YORK INSTITUTE OF TECHNOLOGY

At the end of this session, participants should be able to:

- 1. List the components of the Fermentable Oligo- Di- Mono-saccharies And Polyols (FODMAP) family and their physiological effects on the gastrointestinal tract.
- 2. Describe the patient population that would benefit most from a low FODMAPs diet.
- 3. Categorize foods as high or low in FODMAPs.
- 4. Construct a plan for initial restriction as well as for reintroduction of high FODMAPs foods for long-term maintenance.
- 5. Identify additional medical conditions that may benefit from a low FODMAPs diet and the potential effects of long-term use.

NEW YORK INSTITUTE OF TECHNOLOGY

Which patient population would benefit most from a low FODMAP diet ?

- A. Patients with Gastroesophageal Reflux Disease (GERD)
- B. Patients with Irritable Bowel Syndrome
- C. Patients with diverticulosis
- D. Patients with exocrine pancreatic insufficiency

A low FODMAP diet consists of mainly limiting:

- A. Proteins
- B. Fats
- C. Carbohydrates
- D. Alcohol

NEW YORK INSTITUTE OF TECHNOLOGY

The elimination phase of a FODMAP diet should be:

A. 1 weekB. 1-2 weeksC. 2-6 weeksD. Lifelong

Who, What, When, Where, How & Why?

Who would benefit from a low FODMAPS diet?

- Patients with:
 - Irritable bowel syndrome (IBS)
 - Inflammatory bowel disease (IBD) who have functional gastrointestinal symptoms
 - Celiac disease who are still symptomatic on a strict gluten free diet
 - Non-celiac gluten sensitivity

IBS

- 10-20% of the population
- Functional GI disorder characterized by abdominal pain and altered bowel habits in the absence organic pathology
- Other symptoms:
 - Bloating
 - Excessive gas
 - Urgency
- Pathophysiology:
 - Increased visceral sensitivity
 - Altered gut motility
 - Dysbiosis

IBS

- There are many treatment approaches available for IBS
 - Diet and lifestyle
 - Nutrition supplements, herbs
 - Medications
 - Mental health
- For most people, diet and lifestyle changes are the best option for long-term relief of symptoms

What are FODMAPs?

NEW YORK INSTITUTE OF TECHNOLOGY

• FODMAP is an acronym:

 fermentable oligosaccharides, disaccharides, monosaccharides and polyols

 Identified in 2005 by the GI Dept at Monash University

When are FODMAPs consumed?

NEW YORK INSTITUTE OF TECHNOLOGY

 Fermentable short chain carbohydrates found in everyday foods:

	Where?	Short-Chain Carbohydrate Subtypes and Sources
F	fermentable	
0	oligosaccharides	Fructans: wheat, onions, garlic, inulin, chicory root, pistachios, cashews, teas- chamomile/chai Galacto-oligosaccharides: beans, lentils, green peas, soy beans/milk
D	disaccharides	Lactose: milk, yogurt, ice cream, cottage cheese, ricotta cheese
М	monosaccharides	Fructose (in excess of glucose): high fructose corn syrup, honey, apples, pears, watermelon, mango, asparagus, artichoke, rum
Α	And	
Ρ	polyols	Mannitol: cauliflower, mushrooms Sorbitol: blackberries, avocado, prunes Xylitol, maltitol, isomalt: candy, gum, mints sweetened with sugar-alcohols Medications: cough syrups, liquid non-steroidals and any suspensions, elixirs, etc.

All dietary FODMAPS go into the same "bucket."

The bucket represents your unique, personal capacity to tolerate FODMAPS carbohydrates from all sources. If your FODMAPS intake exceeds your capacity for digestion and absorbtion in the small intestine, overflow into the large intestine occurs. This may result in IBS symptoms in sensitive individuals.

Example of a Typical Meal:

• Breakfast:

- Frosted Mini Wheats & milk, tea & honey
- Lunch:
 - Wheat bread with turkey & American cheese, apple, cranberry juice
- Snack:
 - Peach flavored yogurt & pretzels
- Dinner:
 - Pasta with tomato sauce & meatballs, side of asparagus

ID the FODMAPS:

• Breakfast:

- Frosted Mini Wheats & milk, tea & honey
- Lunch:
 - Wheat bread with turkey & cheese, apple, cranberry juice
- Snack:
 - Peach flavored yogurt & pretzels
- Dinner:
 - Pasta with tomato sauce & meatballs, side of asparagus

CARBOHYDRATES					
SIMPLE SUGARS		OLIGO- SACCHARIDES	COMPLEX CARBOHYDRATES / POLYSACCHARIDES		
Mono- saccharides /	DI- SACCHARIDES	3-9 sugar units		ar units	
ABSORBABLE CARBOHYDRATES	2 sugar units		Plant	Animal	
1 sugar unit Glucose	Maltose Lactose Sucrose		Starch α-glycosidic	Glycogen α-glycosidic	
Fructose Galactose	Trehalose		Dietary fiber β-glycosidic	Animal fiber glycoproteins	
DIGESTIBLE CARBOHYDRATES INDIGESTIBLE CARBOHYDRATES		RATES			

Why Problematic?

• Monosaccharides:

- GLUT-2 relies on glucose to facilitate passage of fructose
- Fructose:glucose ratio of 1:1 is ideal for absorption for fructose
- Disaccharides:
 - Lactose: 68% of the world's population is lactose nonpersistant
- Oligosaccharides:
 - Fructans & galacto-oligosaccharides: lack the enzyme to digest
- Polyols:
 - Sugar alcohols: slowly absorbed, found naturally and manufactured, dose dependent effect

Monosaccharides

Fruit	Serving size	Fructose (grams)	Fructose in excess of glucose (grams)
Apple	1 medium	10.74	6.32
Pear	1 medium	11.43	6.8
Cherries	100g	6.72	0.2
Banana	1 medium	5.72	Glucose > Fructose

Disaccharides

Lactose content of dairy products

Product	Lactose content (grams)
Milk (1 cup)	
Whole, 2 percent, 1 percent, skim	9-14
Buttermilk	9-12
Evaporated milk	24-28
Sweetened condensed milk	31-50
Lactaid milk (lactose-reduced)	3
Goat's milk	11-12
Acidophilus, skim	11
Yogurt, low fat (1 cup)	4-17
Cheese (1 ounce)	
Cottage cheese (1/2 cup)	0.7-4
Cheddar (sharp)	0.4-0.6
Mozzarella (part skim, low moisture)	0.08-0.9
American (pasteurized, processed)	0.5-4
Ricotta (1/2 cup)	0.3-6
Cream cheese	0.1-0.8
Butter (1 pat)	0.04-0.5
Cream (1 tablespoon)	
Light, whipping, sour	0.4-0.6
Ice cream (1/2 cup)	2-6
Ice milk (1/2 cup)	5
Sherbet (1/2 cup)	0.6-2

Adapted from: Scrimshaw NS, Murray EB. The acceptability of milk and milk products in populations with a high prevalence of lactose intolerance. Am J Clin Nutr 1988; 48:1079. Copyright © 1988 American Society for Clinical Nutrition. J

Date

Oligosaccharides

- Fructans &
- Glacto-

oligosaccharides

Varney, J., Barrett, J., Scarlata, K., Catsos, P., Gibson, P. R., and Muir, J. G. (2017) FODMAPs: food composition, defining cutoff values and international application. *Journal of Gastroenterology* and *Hepatology*, 32: 53–61. doi: 10.1111/jgh.13698.

NEW YORK INSTITUTE OF TECHNOLOGY

Polyols-Sorbitol

Item	Serving Size	Sorbitol (grams)
Pear	1 fruit	3.8
Apple	1 fruit	0.5
Blackberries	10 berries	2.1
Nectarine	1 fruit	0.9
Prunes	1/4c	9.6
Sugar-free candy	4 pieces	15
Sugar-free gum	1 piece	1-2

Medications with Sorbitol

NEW YORK INSTITUTE OF TECHNOLOGY

Acetaminophen

- Acetaminophen and Phenylephrine Hydrochloride
- Cetirizine Hydrochloride

Clonazepam

Cyclosporine

Diphenhydramine Hydrochloride and Ibuprofen diphenhydramine hydrochloride Docusate Sodium

Ethosuximide

Gas Relief Extra Strength

Mucinex Fast-Max Cold, Flu & Sore Throat Liquid Gels

Mytab Gas

Ondansetron Hydrochloride (Orally Disintegrating)

Simethicone (Chewable) 80 mg

Examples of Crossover Foods

<u>Lactose</u>	<u>Fructose</u>	Fructans/GOS	<u>Polyols</u>
Milk	Artichoke	Artichoke	Cauliflower
Yogurt	Asparagus	Garlic	Mushrooms
Ice cream	Tomatoes	Onions	Peas
Ricotta	Apples	Beans	Apples
Cottage	Cherries	Apples	Pears
Custard	Figs	Figs	Plums
	Pears	Plums	Watermelon
	Watermelon	Wheat	Sorbitol
	Agave	Inulin	Xylitol
	Honey	Pistachios	
	HFCS	Watermelon	

Mechanisms by which short-chain fermentable carbohydrates might induce symptoms in IBS

Pathogenic mechanisms in IBS Visceral hypersensitivity; altered luminal microbiota (dysbiosis); altered motility; altered gas handling; brain-gut axis dysregulation

Poorly Absorbed

 Osmotically active in the small intestine

GASTROENTEROLOGY

& HEPATOLOGY

 Fermented by bacteria in colon

Studies of the mechanisms underlying the effects of fermentable carbohydrates on gastrointestinal symptoms

Reference	Study design	Participants	Intervention	Outcome measures	Findings
Ong et al. (2010) ¹¹²	Randomized, single-blind, crossover	IBS (n=15) Healthy (n=15)	2-day high FODMAP diet (50g per day) 2-day low FODMAP diet (9g per day)	Hourly H ₂ profile for 14h on day 2	Higher H_2 production in high vs low FODMAP diet in both patients with IBS (242 ppm vs 62 ppm; <i>P</i> <0.001) and controls (181 ppm vs 43 ppm; <i>P</i> <0.001)
Barrett et al. (2010) ¹⁰⁹	Randomized, single-blind, crossover	IBD with ileostomy (n=12)	4-day high FODMAP diet 4-day low FODMAP diet	Effluent weight Effluent water content	Higher effluent weight on high vs low FODMAP diet (409g vs 504g; $P=0.01$) Higher water content on high vs low FODMAP diet (20% increase; $P=0.013$)
Marciani et al. (2010) ¹¹⁰	Randomized, single-blind, crossover	Healthy (n=11)	17.5g mannitol solution 17.5g glucose solution	Small bowel water content using MRI	Higher small bowel water content after mannitol vs glucose at 40 min (381 ml vs 47 ml; P<0.001)
Murray et al. (2013) ¹¹¹	Randomized, single-blind, crossover	Healthy (n=17)	40g fructose solution 40g glucose solution 40g inulin solution 40g fructose + 40g glucose solution	Small bowel water content using MRI	Higher small bowel water content following fructose (median 0–5h area under curve=67 l/min) vs glucose (36 l/min), which was reduced following combined fructose–glucose (46 l/min) Inulin fructans did not affect small bowel water (33 l/min), but increased colonic H_2 production

. 121.12

Abbreviations: FODMAP, fermentable oligosaccharides, disaccharides, monosaccharides and polyols; H_a, hydrogen.

GASTROENTEROLOGY & HEPATOLOGY REVIEWS

Staudacher, H. M. et al. (2014) Mechanisms and efficacy of dietary FODMAP restriction in IBS Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2013.259

Studies investigating the effectiveness of fermentable carbohydrate restriction on IBS symptoms

Reference	Study design	Participants	Duration	Symptom scoring	Findings
Shepherd et al. (2006) ¹¹⁵	Retrospective, uncontrolled	IBS with fructose malabsorption (n=62)	14 months (median)	Unvalidated symptom scoring tool (-10 to +10 scale)	85% of adherent patients had symptom improvement for all symptoms
Gearry et al. (2009) ¹¹⁶	Retrospective, uncontrolled	IBD with functional gastrointestinal symptoms (n=72)	17 months (median)	Unvalidated symptom scoring tool (–10 to +10 scale)	56% of all patients had symptom improvement in overall symptoms
Østgaard et al. (2012) ¹¹⁷	Retrospective, case control	IBS, guided advice (n =43) IBS, unguided (n =36) Healthy (n =35)	Not reported	Birmingham IBS symptom score IBS-QoL	65% of participants completed the study Substantial reduction in pain in guided vs unguided, but not for total score, constipation or diarrhoea Marked improvement in QoL in guided vs unguided
De Roest et al. (2013) ¹¹⁹	Prospective, uncontrolled	IBS (n=90)	16 months (mean)	GI Symptom Rating Scale	Improvement in pain, bloating, nausea, flatulence, range of stool output measures 72% satisfied with overall IBS symptoms
Mazzawi et al. (2013) ¹¹⁸	Prospective, uncontrolled	IBS (n=46)	4 months (median)	Birmingham IBS symptom score IBS-QoL	37% of participants completed the study Total symptoms, pain and diarrhoea improved Marked improvement in QoL
Wilder- Smith et al. (2013) ⁶⁷	Prospective, uncontrolled	IBS (n=212) Other functional gastrointestinal disorder (n=1,160)	6–8 weeks	Unvalidated symptom scoring tool (1 to 10 scale)	Symptom relief in 90% and 94% of those considered 'intolerant' of fructose and lactose, respectively
Staudacher et al. (2011) ¹²⁰	Non-RCT (dietary advice)	IBS, Iow FODMAP (n=43) IBS, standard advice (n=39)	2–6 months	Unvalidated questionnaire (7-point scale 'substantially worse' to 'substantially improved')	Greater proportion of the intervention group satisfied with symptom response (76%) vs controls (54%) Greater proportion of the intervention group reported improvement in composite symptom score (86%) vs controls (49%)
Staudacher et al. (2012) ⁶⁰	RCT (dietary advice)	IBS, habitual diet (n=22) IBS, low FODMAP (n=19)	4 weeks	'Adequate relief' question GI Symptom Rating Scale Bristol Stool Form Scale	Greater proportion reporting adequate relief following low FODMAP diet (68%) vs control (23%) Reduced symptom score for bloating, borborygmi, urgency and overall symptoms following low FODMAP compared with controls
Ong et al. (2010) ¹¹²	Randomized blinded, controlled crossover (feeding study)	IBS $(n=15)$ Healthy $(n=15)$	4 days	Unvalidated symptom scoring tool (0–3)	Median symptom score lower on low FODMAP diet (2) vs high FODMAP diet (6)
Halmos <i>et al.</i> (2013) ¹²¹	Randomized, blinded, controlled crossover (feeding study)	IBS $(n=33)$ Healthy $(n=12)$	21 days	Unvalidated symptom scoring tool (100mm VAS) Stool frequency Stool water content	83% of participants completed the study Lower overall gastrointestinal symptoms on low FODMA diet (23mm) vs a typical Australian diet (45mm) Reduced stool frequency in IBS-D during low FODMAP diet versus Australian diet

Abbreviations: FODMAP, fermentable oligosaccharides, oligosaccharides, disaccharides, monosaccharides and polyols; IBS-D, diarrhoea-predominant IBS; QoL, quality of life; RCT, randomized controlled trial; VAS, visual analogue scale.

Staudacher, H. M. et al. (2014) Mechanisms and efficacy of dietary FODMAP restriction in IBS Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2013.259

Use in other GI Disorders besides IBS

- Patients with:
 - Inflammatory bowel disease who have functional gastrointestinal symptoms
 - Crohn's > Ulcerative Colitis
 - Celiac disease who are still symptomatic on a strict gluten free diet
 - 47% still symptomatic
 - Non-celiac gluten sensitivity

All dietary FODMAPS go into the same "bucket."

The bucket represents your unique, personal capacity to tolerate FODMAPS carbohydrates from all sources. If your FODMAPS intake exceeds your capacity for digestion and absorbtion in the small intestine, overflow into the large intestine occurs. This may result in IBS symptoms in sensitive individuals.

NEW YORK INSTITUTE OF TECHNOLOGY

Irritable%20Bowel%20Syndrome%20%20the%20FODMAP%20diet%20(1).pdf

Low FODMAP Diet Implementation

- Three Phases:
 - 1. Elimination Phase:
 - Restrict all high FODMAP foods from the diet for 2-6 weeks
 - 2. Re-introduction Phase:
 - Reintroduce small amounts of one food; gradually increase the dose day 2-3 if the food tolerated
 - Symptoms develop, 3-4 day wash out period
 - No symptoms, next FODMAP challenge begins
 - Process typically lasts 6-8 weeks
 - 3. Maintenance Phase:
 - Long-term adherence to personalized modified diet

NEW YORK INSTITUTE

OF TECHNOLOGY

Low FODMAP Diet Implementation

NEW YORK INSTITUTE OF TECHNOLOGY

Prepping the Patient:

- Diet: elimination phase, challenge phase
- Explain mechanisms of FODMAPs, bucket concept
- Education emphasizes what they can eat vs focusing on what they cannot
- Label reading and hidden sources of FODMAPs
- Cooking and recipe modifications
- Grocery shopping and dining out tips
- Personalized plan based on patient likes/dislikes, cooking skills, lifestyle
- Referral to a Registered Dietitian

Restrict all high FODMAP foods from the diet for 2-6 weeks

High FODMAP Foods

(Avoid these foods during the FODMAP elimination phase)

Grains

Barley Rye Wheat (crackers, cereal, pasta, bread, baked goods) *<u>sourdough</u> bread is allowed

Fruit

Apples/apple juice/cider Apricot Asian pear Blackberries Cherries Dates Figs Fruit in natural juices Grapefruit Mango Nectarine Peaches Pears/pear juice Persimmon Plums Prunes Watermelon

Asparagus Cauliflower Garlic Leeks

Vegetables

Artichoke

Mushrooms Onion/shallots Sugar snap peas

Dairy

Custard Frozen yogurt Ice cream Milk Pudding Soft cheese (cottage, ricotta) Yogurt

Nuts/Legumes

Cashews Pistachios Legumes: black beans, kidney beans, pinto beans, baked beans, soy beans, hummus (canned chickpeas and lentils are allowed in small portions)

Sweeteners

Agave High fructose corn syrup Honey Sugar alcohols (found in sugar-free gum, candy, and some medicine): sorbitol mannitol, xylitol, maltitol, erythritol, isomalt,

Beverages

Chamomile, oolong, fennel, & chai tea Coconut milk Coffee made with chicory Rice milk Rum Soy milk

Revised 11/2015

Low FODMAP Foods

(Allowed during the elimination phase)

Grains and Starches

Cheerios (plain)* Corn flakes* Corn tortillas Gluten free bread/cereal* Udi's GF white bread Gluten free crackers* Gluten free pasta: rice, quinoa, corn Grits Oatmeal (1/2 cup dry)* Polenta Popcorn Potato Potato Chips*

Quinoa Rice, brown or white Rice/popcorn cakes* Rutabaga Soba noodles, 100% buckwheat flour* Sourdough bread- whole wheat or white (2 slices)* Sweet potato (1/2 cup) Tortilla chips*

Fruits

**Limit intake of fruits to one serving/ meal or snack.

Avocado (1/8th)

Banana

Blueberry

Cantaloupe

Clementine

Coconut, shredded (1/4 cup) Cranberry Dried cranberries and raisins (1 Tbsp) Grapes Honeydew melon Kiwifruit Lemon or Lime Mandarin orange Orange juice Orange Papaya Pineapple Pomegranate (1/2) Raspberry Rhubarb Strawberry

Vegetables

Alfalfa sprouts Bamboo shoots Bean sprouts Bell pepper Beet (2 slices) Bok <u>chox</u> Broccoli (1/2 cup) Brussels sprouts (1/2 cup) Carrots Celery (1/4 stalk) Cabbage (red, common cabbage or 1/2 cup savoy) Chives Corn (1/2 cob or 1/3 cup) Cucumber Endive

Eggplant Fennel hulb Green beans Green peas (1/4 cup), snow peas (5 pods) Kale Lettuce (iceberg, romaine, baby lettuce, etc) Okra (6 pods) Olives Parsnip Pumpkin (1/4 cup) Radish Spinach Spring onion/scallion (green part only) Squash (butternut: ¼ cup) Swiss chard Tomato: (avoid sundried tomatoes and tomato products with added onion/garlic) Turnip Water chestnuts Zucchini

Dairy

Almond milk* Hard/aged cheeses: all, including feta Hemp milk* Kefir (99% lactose free)* Lactose free ice cream* Lactose free milk Lactose free yogurt* Lactose free cottage cheese

Revised 11/2015

Label Reading Tips for the FODMAP Elimination Diet

Allowed ingredients:

-Arrowroot -Aspartame (Nutrasweet/Equal) -Brown sugar -Cane Sugar -Coconut milk (canned; used in cooking) -Confectioner's Sugar -Corn Starch -Corn Syrup (not HFCS) -Dextrose -Glucose -Granulated Sugar -Guar gum -Invert sugar -Maltodextrin -Miso paste -Molasses -Pectin -Raw Sugar -Rice Syrup -Saccharine -Soy lecithin -Soy Sauce -Stevia -Sucrose -Sucralose (Splenda) -Tabasco Sauce -Tapioca -Vinegar -Wheat dextrin -Wheat gluten -Wheat starch -Whey/soy protein isolate

Not allowed ingredients:

-Agave -Amaranth -Bulgur wheat -Carob -Chicory root/inulin -Crystalline fructose -Couscous -Dry milk solids -Erythritol

-Flour-white/wheat

-Fructose -Eructo-oligosaccharides -Fruit juice concentrates (apple/pear) -Garlic powder/salt

-Glycerine.

-Glycerol -Goat's milk -High fructose corn syrup (HFCS) -Honey -Isomalt -Kamut -Maltitol -Mannitol -Natural flavors (in savory foods, i.e. broth) -Onion powder/salt -Polydextrose

-Seasoned salt/pepper -Sorbitol -Spelt -Sprouted wheat -Texturized vegetable protein -Wheat berries -Xylitol

University of Michigan **Hospitals** and **Health Centers**

Label Reading

NEW YORK INSTITUTE OF TECHNOLOGY

INGREDIENTS: PEANUTS, CONTAINS LESS THAN 2% OF SEA SALT, SPICES (CONTAINS CELERY), DRIED ONION, DRIED GARLIC, PAPRIKA, NATURAL FLAVOR, SUGAR, CORN STARCH, GELATIN, TORULA YEAST, MALTODEXTRIN, DRIED CORN SYRUP.

One at a time

Process typically lasts 6-8 weeks

FODMAP Challenge Phase

Lactose Challenge

Frozen yogurt* lce cream* Milk, all types Pudding* Soft cheese (cottage, ricotta) Yogurt*

Polyols Challenge

Sugar alcohols: isomalt, maltitol, mannitol, sorbitol, xylitol, erythritol Candy, gums, & medicines sweetened with sugar alcohols Sorbitol: Apricot Avocado (>1/8) Blackberries Peach (yellow) Sweet corn (>1/2 cob) Apples/apple juice** Asian pear** Cherries** Nectarine** Pears/pear juice** Plum/prunes** Mannitol: Cauliflower Celery (>1/4 stalk)

Mushrooms Snow peas (>5 pods) Sweet Potato (>1/2 cup) Butternut squash (>1/4 cup)** Watermelon**

Fructose Challenge

Agave Asparagus Honey High fructose corn syrup Mango Rum Sugar snap peas Apple/apple juice** Artichoke** Asian pear** Cherries** Pear/pear juice** Watermelon**

Fructans Challenge

Barley Beets (>2_slices) Broccoli (>1/2 cup) Brussels sprouts (>1/2 cup) Cabbage, savoy (>1/2 cup) Dates Garlic Grapefruit Inulin/Chicory root Leeks Okra (>6 pods) Onion/shallots Pistachio, Cashews Pumpkin (>1/4 cup) Rye Tea- chamomile, chai, fennel, oolong Wheat* (crackers, cereal, pasta, bread, baked goods) Artichoke** Nectarine** Plum/prunes** Watermelon**

Galactans (GOS) Challenge

-Canned, rinsed, drained, and then cooked beans will have lowest FODMAP amount. Legumes: chickpeas, lentils, black beans, kidney beans, pinto beans, baked beans, soy beans/soy milk, hummus* Butternut squash (>1/4 cup)** Green peas (>1/4 cup)**

*Check label for other FODMAP ingredients **Food appears in more than one group

Revised 6/2015

FODMAP FOOD CHALLENGE

1. **Disaccharide** (Lactose) Challenge food: ie Greek Yogurt Amount Day 1: _____

Day 2: _____ Day 3: _____

2. **Monosaccharide** (Fructose) Challenge food: ie Honey Day 1: _____ Day 2: _____ Day 3: _____

3. **Oligosaccharide** (Fructan) Challenge food: ie Wheat Day 1: _____ Day 2: _____ Day 3: _____

4. **Polyol** (Sorbitol) Challenge food: ie Peach Day 1: _____ Day 2: _____

Day 3: _____

GI Symptoms

NEW YORK INSTITUTE OF TECHNOLOGY

Guide patient

- Review results
- Additional foods
- Repeat failures

(())

Long-term Risks & Unanswered Questions

- Low fiber
- Low prebiotics
- Luminal bifidobacter reduction

Referral to a Registered Dietitian

NEW YORK INSTITUTE OF TECHNOLOGY

Gunter Gastroenterology and Hepatology	G JGHF
	doi:10.1111/job.1369

Abstract

REVIEW ARTICLE

Who should deliver the low FODMAP diet and what educational methods are optimal: a review

Maiella O'Keeffe* and Miranda CE Lomer*.¹

*Diabetes and Nutritional Sciences Division. Faculty of Life Sciences & Medicine. Kino's College London, and †Department of Gastroenterology. Guy's and St Thomas' NHS Foundation Trust, London, UK

Key words

education delivery, group education, irritable bowel syndrome. Jow FODMAP diet.

Accepted for publication 14 November 2016.

Correspondence

Dr Miranda Lomer, Diabetes and Nutritional 150 Stamford Street London SE1 9NH LIK Email: miranda.lomer@kcl.ac.uk

Disclosures: The authors have nothing to

Dictary management is being hailed as an effective strategy for the management of irritable bowel syndrome. Specifically, a diet low in fermentable carbohydrates (FODMAPs) has demonstrated efficacy in approximately 70% of patients. As evidence in support of the low FODMAP diet continues to emerge, there is increasing debate regarding implementation of the diet particularly concerning who should educate patients and how to educate them. Registered dicticians have largely pioneered the evidence that supports the Sciences Division, School of Medicine, King's effectiveness of the low FODMAP diet in irritable bowel syndrome, and the diet is College London, 4.21 Franklin Wilkins Building. recognized as a dietician-led therapy. However, there is an increasing trend for nondictician-led implementation of the dict despite an absence of evidence on both the clinical or cost-effectiveness of such. Additionally, there is a growing requirement for dietetic services to increase caracity in response to increasing referrals, and consequently, there is a need to investigate innovative ways to educate patients whilst maintaining dieticianled intervention. Herein, we review the evidence for delivery of the low FODMAP diet and discuss notentially effective methods for service delivery

predominantly arisen from dictitian-led low FODMAP advice.3-8 Non-dictitian-led implementation of the low FODMAP diet represents significant departure from the evidence base as well as recommendations from clinical guidelines

for a period of 4-8 weeks followed by systematic reintroduction of individual FODMAPs to tolerance. The therapeutic nature of the controlled trials (RCTs)^{3,5,9,10} and non-RCTs^{6,8,11,12} that support the use of the low FODMAP diet in IBS, all of which have and dictary FODMAP composition analyses have also been pioneered using dictitian-led education.14,15 In Australia, a dictitian-led randomized, crossover feeding study compared the low FODMAP diet to a typical Australia (control) diet in patients with IBS and healthy controls.3 The authors reported lower overall gastrointestinal symptom scores on the low FODMAP compared with the control diet. Individual symptoms, notably bloating, pain, and flatulence, were all significantly

yours in that all food and be

ing studies are advanta

Patients benefit from instruction provided by a dietitian who specializes in GI nutrition and is familiar with the low FODMAP diet

effective dietary management in irritable howel syndrome (IBS) with an expanding evidence base to support the clinical efficacy of the diet. It involves dietary restriction of high FODMAP foods for a period of 4-8 weeks followed by systematic reintroduction of low FODMAP diet is based on symptom improvement rather than addressing the underlying pathological cascade; therefore, it is a utilized dictitian-led education. A crossover feeding study symptom management strategy and not a cure for IBS. It is a demonstrating the mechanistic basis for the low FODMAP diet complex dietary strategy, and clinical effectiveness of the low FODMAP diet has been demonstrated using dietitian-led counselling: however, in clinical practice, other less comprehensive and unsubstantiated educational methods are increasingly implemented.

The low FODMAP diet is quickly becoming the cornerstone for

Who should deliver the low FODMAP diet

Clinical guidelines recognize the importance of the low FODMAP reduced with the low FODMAP but not the control diet. Feed liet in the management of IBS 1.2 The National Institute for Health

NEW YORK INSTITUTE OF TECHNOLOGY

Which patient population would benefit most from a low FODMAP diet ?

- A. Patients with gastroesophageal reflux disease (GERD)
- B. Patients with irritable bowel syndrome
- C. Patients with diverticulosis
- D. Patients with exocrine pancreatic insufficiency

A low FODMAP diet consists of mainly limiting:

- A. Proteins
- B. Fats
- C. Carbohydrates
- D. Alcohol

NEW YORK INSTITUTE OF TECHNOLOGY

The elimination phase of a FODMAP diet should be:

A. 1 weekB. 1-2 weeksC. 2-6 weeksD. Lifelong

References

- <u>1. https://practicalgastro.com/wp-content/uploads/2019/10/Parrish-July-2019.pdf</u> <u>2. https://www.monashfodmap.com/</u>
- Ford AC, Moayyedi P, Chey WD et al. American College of Gastroenterology's monograph on the management of irritable bowel syndrome. Am J Gastroenterol. 2018;113:1–18.
 Teruel C, Garrido E, Mesonero F. Diagnosis and management of functional symptoms in inflammatory bowel disease in remission. World J Gastrointest Pharmacol
- Ther 2016;7(1):78-90.
- 5. Prince AC, Myers CE, Joyce T, et al. Fermentable Carbohydrate Restriction (Low FODMAP Diet) in Clinical Practice Improves Functional Gastrointestinal Symptoms in Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis. 2016;22(5):1129–1136.
- 6. Silvester JA, Graff LA, Rigaux L, et al. Symptoms of Functional Intestinal Disorders Are Common in Patients with Celiac Disease Following Transition to a GlutenFree Diet. Dig Dis Sci. 2017;62:2449–2454.

References

- 7. Roncoroni L, Bascunan K, Doneda L, et al. A low FODMAP gluten-free diet improves functional gastrointestinal disorders and overall mental health of celiac disease patients: a randomized controlled trial. Nutrients 2018;10(8).
- 8. Biesiekierski JR, Peters SL, Newnham ED, et al. NO effects of gluten in patients with reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 2013;145(2):320-328.
- 9. Staudacher, H., Irving, P., Lomer, M. *et al.* Mechanisms and efficacy of dietary FODMAP restriction in IBS. *Nat Rev Gastroenterol Hepatol* **11**, 256–266 (2014) doi:10.1038/nrgastro.2013.259
- 10. Varney, J., Barrett, J., Scarlata, K., Catsos, P., Gibson, P. R., and Muir, J. G. (2017) FODMAPs: food composition, defining cutoff values and international application. Journal of Gastroenterology and Hepatology, 32: 53–61. doi: 10.1111/jgh.13698.
- 11. O'Keeffe, M., and Lomer, M. C. E. (2017) Who should deliver the low FODMAP diet and what educational methods are optimal: a review. Journal of Gastroenterology and Hepatology, 32: 23–26. doi: 10.1111/jgh.13690.

NEW YORK INSTITUTE OF TECHNOLOGY

THANK YOU!

Contact: tel: 516 686-1248 cwolf01@nyit.edu

> Do. Make. Innovate. Reinvent the Future.