The Acute Kidney

<mark>K1</mark>

Becky Ness, PA-C, MPAS, DFAAPA, FNKF American Academy of Nephrology PAs

K2

No disclosures

Slide 1	
K1	Kidneys, not kidney's They are not possessedthey are plural Kim, 4/10/2019
K2	PAs, not PA'ssame argument, not possessed, just plural Kim, 4/10/2019

Objectives

- I. Define Acute Kidney Injury (AKI)
- 2. Identify causes of AKI
 - Community acquired (CA) vs Hospital acquired (HA)
 - Common vs. not so common

- Ascertain testing utilized to identify an AKI as well as utilization of biomarkers in predicting risk of injury/probability of recovery
- 4. Discuss treatment of AKI with objective use of which treatments and when they are indicated

Pre-Test Question #1

Which of the following is the best term to define a patient with acute kidney function changes?

- A. Acute Renal Failure
- B. Acute Renal Injury
- c. Acute Kidney Injury
- D. Acute Kidney Dysfunction

Pre-Test Question #2

Which of the following cause AKI?

- A. Dehydration
- B. Medications
- c. Obstructive uropathy
- D. All of the above

Pre-Test #3

Which of the following would NOT be an indication to initiate renal replacement therapy?

- A. Blood pH < 7.1, refractory to bicarbonate therapy
- B. Serum potassium > 6.5mEq/L with peaked t-waves on EKG, refractory to medical therapy
- c. Fluid overload w/ oliguria in a cardiac surgery patient not responding to diuretic therapy
- D. Blood Urea Nitrogen level > 100mg/dL, despite volume expansion with NS

AKI vs. ARF

- At the *turn of the century (almost 2 decades ago now...)*, AKIN (Acute Kidney Injury Network), recommended that the term AKI replace ARF
- Why?
- Standardization Allows definitions to be international for research and outcomes purposes
- Just the injury, without dialysis, increases long term kidney risk
- Everyone has a different point when they start dialysis

Definitions of AKI

Stage	Urine Output	RIFLE	AKIN	KDIGO
1	<0.5 ml/kg/hr for 6 hr	Risk : Increase in SCr of 1.5x or decrease in GFR > 25%	Increase in SCr 1.5 x baseline or ≥ 3.0 mg/dl	Increase in SCr of 1.5-1.9 x baseline or ≥ 0.3 mg/dl increase in SCr
2	<0.5 ml/kg/h for 12 hr	Injury : Increase in SCr 2x or decrease in GFR > 50%	Increase in SCr 2x baseline	Increase in SCr of 2-2.9 x baseline
3	<0.3 ml/kg/hr for 24 hr or anuria for 12 hr	Failure : Increase in SCr 3x or decrease in GFR > 75%	Increase in SCr 3x baseline or ≥ 4 mg/dI (with acute rise of > 0.5mg/dI)	Increase in SCr of > 3x baseline or increase in SCr ≥ 4.0 mg/dl or initiation of RRT
Loss & ESRD of the RIFLE criteria are not included in this staging chart as they are				

considered outcome variables.

Used with permission, Erica Davis, PAC, Acute Kidney Injury: The Ugly Truth, Elsevier

AKI Epidemic – USRDS Data Survey

AKI Epidemic – USRDS Data Survey

AKI Epidemic – USRDS Data Survey

Hospital discharge status for Medicare patients

Frequency of AKI

•7-18% of **ALL** inpatients

- 30-70% critically ill
 - •5% require renal replacement therapy (RRT)
- •20-30% of those who undergo elective cardiac surgery

 Lewington. Raising Awareness of AKI: Global Perspective of a Silent Killer. *Kidney international Sept 2013* Van Duijl, TT et al. Kidney Injury Biomarkers in an Academic Hospital Setting. *Clin Biochem Rev 40 (2) 2019*

Who will presents with AKI?

- Older
- Diabetic
- CKD
- Black
- Hispanic
- Hospitalized
- Previous AKI DX
- Anyone can present with AKI but play the odds....

Recognizing AKI

- Not actually a "disease", but rather a clinical syndrome
 - Heterogeneous disorder
 - Multiple etiologies
- Goal is to promptly identify and treat the underlying cause

Evaluation

- Careful history
 - Drug history
 - Radiocontrast exposure
 - Recent hypotension
 - Urinary symptoms
- Physical exam
 - Evaluation of fluid status
 - Signs of acute or chronic heart failure
 - Signs of infection/sepsis
 - Signs of systemic illnesses

Evaluation

- Chemistry
 - Elevated creatinine and likely BUN
 - Possibly electrolyte abnormalities
 - Acid base disorder
- Urinalysis and urine indices
 - RBCs or RBC casts
 - WBCs or WBC casts
 - Proteinuria
 - Hyaline or granular casts
 - Urine electrolytes (especially urine sodium, FENa)

- Renal/Bladder ultrasound
 - Size and echogenicity
 - Mass/tumor/cyst
 - Hydronephrosis
- Kidney biopsy
 - Histologic findings to confirm/support clinical diagnosis

- What else can be done?
- Ongoing research into biomarkers
 - Traditional/Classic
 - Functional
 - Damage
 - Cell injury
 - Stress-associated
 - Inflammatory
 - Pre-injury

- Universal attributes of an ideal biomarker
 - Easily measured rapid test: readily available sample (blood/urine)
 - Cost effective biologic/physiologic assay with high sensitivity/specificity
 - Rapid and dynamic changes in levels that correlate with progression and/or improvement
 - Has prognostic value

Functional Biomarkers

- Creatinine
 - Limitations: poor correlation with GFR in a dynamic state
 - Affected by muscle mass, diet, medications and volume status
- Cystatin C
 - Alternative to Cr
 - Less affected by gender/diet/muscle mass
- Urinary Output

Inflammation Biomarkers

- ► KIM-1
 - up-regulated in renal cells after injury

- $\circ~$ urine levels $\uparrow~$ in patients w/ ischemia induced ATN
- predictive for AKI development 12–24 hr post CABG

NGAL

- ↑ in renal tubular cells during inflammatory/ischemic injury
- 1 urinary levels 2 hr after CABG were predictive for AKI

▶ IL-18

- Associated with ATN and not with eGFR defined CKD
- ↑urinary levels associated with occurrence of AKI

Cell Cycle Arrest Biomarkers

- ► IGFBP7
- ► TIMP-2
- First FDA approved biomarker : NephroCheck
 - Product of the two
 - Urinary value predictive of development of moderate-severe AKI in post operative patients

Predictive Biomarkers for RRT in AKI

- NGAL
- ▶ IL-18
- Cystatin C
- ► IGFBP-7*TIMP-2
 - Insulin like growth factor binding protein-7/Tissue inhibitor of mettaloproteinase -2

N. Shah and E. Lerma, Novel Biomarkers of Renal Function Introduction and Overview: *Medscape*: 9/20/2017

Predictive biomarkers for AKI

- ► KIM-1
 - Best characteristics for both sensitivity and specificity
- NGAL
- ► IL_18
- L-FABP
- TIMP-2 * IGFBP7

Promising biomarkers

- microRNAs
 - Potential for early detection or prognosis
- Development-related molecules
 - Wnt/ β -catenin : DKK (Dickkopf)
 - Potential in type of injury and potential outcome
- Hemojuvelin (HJV)
 - Potential as early AKI biomarker in response to Fe homeostasis in AKI
- Osteopontin (OPN)
 - Potential role in sepsis related AKI

Types of AKICA-AKIHA-AKI(Community Acquired) (Hospital Acquired)

- Most common
- May be as high as 65%
- Increased incidence in summer
- Increased incidence with multiple medications
- Increased incidence with multiple co-morbidities
- We have very little data
 NOT CODED

- May be missed but EHR coding is helping
- More common if nephrology is consulted
- More studied
- Increases risk for recurrence
- Increases risk for CKD (bidirectional)

Syndromes of AKI

Intravascular Volume Dehydration/Hemorrhage GI, Cutaneous or Renallosses Third SpacingAcute Tubular Necrosis Ischemic: Sepsis HypotensionUpper Tract Obstruction Intrinsic Stone Papillary Necrosis Blood Clot TCCEffective Blood Volume CHF Cirrhosis Nephrotic Syndrome Sepsis AnesthesiaAcute Tubular Necrosis Sepsis Hypotension Drugs Drugs Drugs Drug-induced Infection-related Systemic Diseases MalignancyUpper Tract Obstruction Intrinsic Stone Papillary Necrosis Blood Clot ExtrinsicAltered Renal HemodynamicsAcute Tubular Necrosis Sepsis NalignancyUpper Tract Obstruction Intrinsic Stone Drug-induced Infection-related Systemic Diseases MalignancyAltered Renal HemodynamicsAcute Gluene hold MalignancyUpper Tract Obstruction Intrinsic Stone Blood Clot Extrinsic Infection-related Systemic Diseases Malignancy	Prerenal AKI	Intrarenal AKI	Postrenal AKI
Pregiomerular Constriction Acute Giomerulonephritis BPH Postglomerular Vasodilation Acute Vascular Syndrome Prostate Cancer Medications: ACEI, NSAIDS, CSA Renal artery dissection Prostate Cancer Hepatorenal syndrome, Surgery Renal artery Throm-Emb Stones: bladder Renal Vascular Obstruction Renal vein thrombosis Neurogenic bladder	Dehydration / Hemorrhage GI, Cutaneous or Renal losses Third Spacing	Ischemic: Sepsis Hypotension Nephrotoxic: Drugs Pigments <u>Acute Interstitial Nephritis</u> Drug-induced Infection-related Systemic Diseases Malignancy <u>Acute Glomerulonephritis</u> <u>Acute Vascular Syndrome</u> Renal artery dissection Renal artery Throm-Emb Renal vein thrombosis	Intrinsic Stone Papillary Necrosis Blood Clot TCC Extrinsic Retroperit. Fibrosis Malignancy Ligation PelvicMass <u>Lower Tract Obstruction</u> Urethral Stricture BPH Prostate Cancer TCC of the bladder Stones: bladder

Syndromes of AKI

Prerenal AKI

, <u>Intravascular Volume</u>

Dehydration, Hemorrhage GI, Cutaneous or Renal losses Third Spacing

↓ <u>Effective Blood Volume</u> CHF

Cirrhosis Cirrhosis Nephrotic Syndrome Sepsis Anesthesia

Anestnesia

Altered Renal Hemodynamics

Pre-glomerular Constriction Post-glomerular Vasodilation Medications: ACEI, NSAIDS, CSA Hepatorenal syndrome, Surgery

Renal Vascular Obstruction

Abd Compartment Synd.

Delia

78 y/o presents ED c/o N&V for the last 48hrs
Unable to keep down intake x 48hrs
No available PMH
PE: sitting: 110/60, HR 80; standing: 80/55, HR 100
Labs: BUN 45mg/dL, SCr 1.5mg/dL, FeNa 0.3%
UA: neg heme/protein, 0-1 RBC, neg WBC,
25-100 hyaline casts

What type of AKI?

- A. CA-AKI
- B. HA-AKI
- C. Not Coded as AKI

Delia

78 y/o presents ED N&V X 48H No food held down x 48H No available PMH PE: 110/60 HR 80 sitting, 80/55, HR 100 standing Labs: BUN 45mg/dL, SCr 1.5mg/dL, FeNa 0.3% UA: neg heme/protein, 0-1 RBC, neg WBC, 25-100 hyaline casts

What type of AKI?

- A. CA-AKI
- B. HA-AKI
- C. Not Coded as AKI

Pre-renal AKI

SYMPTOMS

- History of fluid losses
- Use of NSAIDS or ACEI
- Thirst

SIGNS

- Fluid deficit by I/O balance
- Weight loss
- Oliguria
- Orthostatic hypotension
- Tachycardia
- Flat neck veins in the supine position
- Lack of sweat
- Dry skin and mucosae with loss of skin turgor

FeNa (Fractional Excretion of Na)

Remember FeNa is a urine test

	Pre-	Intra-	Post-
	Renal	Renal	Renal
FENa	<1%	>1%	>4%

Syndromes of AKI

Intra-Renal AKI
Acute Tubular Necrosis
Ischemic:
Sepsis
Hypotension
Nephrotoxic:
Drugs
Pigments
Acute Interstitial Nephritis
Drug-induced
Infection-related
Systemic Diseases
Malignancy
Acute Glomerulonephritis
Acute Vascular Syndrome
Renal artery dissection
Renal artery Thrombo-Emboli
Renal vein thrombosis
Atheroembolic disease
Acute Tubular Necrosis (ATN)

- Ischemic vs. Toxin vs. Sepsis
 - FeNa typically > 1%
- Characteristic casts in sediment (U/A)
 - Granular and renal tubule
 - Pathognomonic...muddy brown casts
 - Urine specific gravity < 1.010

- Marked by back leak and intra-tubular obstruction
- Usually Recovers
 - 3 phases: initiation, maintenance, and recovery
 - First, blame the drug....

58 y/o male w/PMH CHF 15# weight gain over 1 week DOE, PND, unable to lie flat PE: 3+ BLL edema to knees, wheezes, crackles Admit to hospital for IV furosemide Daily labs done, as usual SCr increases

What type of AKI?A) CA-AKIB) HA-AKIC) Not coded as AKI

58 y/o male w/PMH CHF 15# weight gain over 1 w DOE, PND, unable to lie flat PE: 3+ BLL edema to knees, wheezes, crackles Admit to hospital for IV lasix Daily labs done, as usual SCr increases

What type of AKI?
A) CA-AKI
B) HA-AKI
C) Not coded as AKI

58 y/o male w/PMH CHF 15# weight gain over 1 w DOE, PND, unable to lie flat PE: 3+ BLL edema to knees, wheezes, crackles Admit to hospital for IV lasix Daily labs done, as usual SCr increases

Which of the following is the most worrisome in Alvin?

- A. SCr 0.7mg/dL to 0.9mg/dL
- B. SCr 0.8mg/dL to 1.4mg/dL
- C. SCr 4mg/dL to 7mg/dL
- D. SCr 3.3mg/dL to 3.8mg/dL

58 y/o male w/PMH CHF 15# weight gain over 1 w DOE, PND, unable to lie flat PE: 3+ BLL edema to knees, wheezes, crackles Admit to hospital for IV lasix Daily labs done, as usual SCr increases

Which of the following is the most worrisome in Alvin?

- A. SCr 0.7mg/dL to 0.9mg/dL
- B. SCr 0.8mg/dL to 1.4mg/dL
- C. SCr 4mg/dL to 7mg/dL
- D. SCr 3.3mg/dL to 3.8mg/dL

Acute Interstitial Nephritis (AIN)

- Classic
 - Fever, Rash, eosinophilia, and eosinophiluria
- Pyuria present
 - WBC casts common
- Rare Infectious etiology
 Viral infections, legionella

 - leptospirosis, sarcoidosis
- Usual Suspects

 - Drugs- NSAIDs
 Particularly Antibiotics
 - – Penicillin's; Quinolones
- U/A
 - Hematuria
 - Pyuria (eosinophils)
 - WBC casts

78 y/o in ED w/CP while shoveling snow PMH: DM, HTN, GFR 3a, all well-controlled EKG shows ST elevation, taken to cath lab → stented

F/U labs 3 days later (KDIGO guidelines state SCr to be drawn 48–72H post exposure) SCr: 2.7mg/dL (baseline 1.9mg/dL)

What type of AKI? A) CA-AKI B) HA-AKI C) Not coded as AKI

78 y/o in ED w/CP while shoveling snow PMH: DM, HTN, GFR 3a, all well-controlled EKG shows ST elevation, taken to cath lab \rightarrow stented

*F/U labs 3 days later in PMD (KDIGO guidelines state SCr to be drawn 48-72H post exposure) SCr: 2.7mg/dL (baseline 1.9mg/dL)

What type of AKI? A) CA-AKI B) HA-AKI C) Not coded as AKI

78 y/o in ED w/CP while shoveling snow PMH: DM, HTN, GFR 3a, all well-controlled EKG shows ST elevation, taken to cath lab → stented

*F/U labs 3 days later in PMD (KDIGO guidelines state SCr to be drawn 48-72H post exposure) SCr: 2.7mg/dL (baseline 1.9mg/dL)

What is the most likely cause of Lucy's AKI?

- A) Cholesterol embolization
- B) Post renal AKI
- C) Contrast nephropathy
- D) Beta blocker induced hypotension

78 y/o in ED w/CP while shoveling snow PMH: DM, HTN, GFR 3a, all well-controlled EKG shows ST elevation, taken to cath lab → stented

*F/U labs 3 days later in PMD (KDIGO guidelines state SCr to be drawn 48–72H post exposure) SCr: 2.7mg/dL (baseline 1.9mg/dL)

What is the most likely cause of Lucy's AKI?

- A) Cholesterol embolization
- B) Post renal AKI
- C) Contrast nephropathy
- D) Beta blocker induced hypotension

Glomerulonephritis (GN)

- Hallmark
 - HTN, Proteinuria, and Hematuria
- Red Cell Casts and Dysmorphic Red Cells in urine sediment
- Usually associated with peripheral edema and low FeNa
- These GN diagnoses are usually nephrotic at presentation:
 - Focal Segmental Glomerulosclerosis (FSGS)
 - Membranous Nephropathy
 - Minimal Change Disease

13 y/o male

PMH: sore throat week previously w/N&V Dark 'coke' colored urine, brought to ED16 Labs: Na 132mEq/L, K 5mEq/L, BUN 80mg/dL, SCr 2.6mg/dL, bicarb 16mEq/L UA: Dip 2+ blood, 1+ protein, RBC casts on micro

What type of AKI does he have?

- A) CA-AKI
- B) HA-AKI
- C) Not coded as AKI

13 y/o male

PMH: sore throat week previously w/N&V Dark 'coke' colored urine, brought to ED16 Labs: Na 132mEq/L, K 5mEq/L, BUN 80mg/dL, SCr 2.6mg/dL, bicarb 16mEq/L UA: Dip 2+ blood, 1+ protein, RBC casts on micro

What type of AKI does he have? A) CA-AKI B) HA-AKI

C) Not coded as AKI

13 y/o male

PMH: sore throat week previously w/N&V Dark 'coke' colored urine, brought to ED16 Labs: Na 132mEq/L, K 5mEq/L, BUN 80mg/dL, SCr 2.6mg/dL, bicarb 16mEq/L UA: Dip 2+ blood, 1+ protein, RBC casts on micro

What is the cause of his AKI?

- A) ATN
- B) GN
- C) AIN
- D) I have absolutely no idea....

13 y/o male

PMH: sore throat week previously w/N&V Dark 'coke' colored urine, brought to ED16 Labs: Na 132mEq/L, K 5mEq/L, BUN 80mg/dL, SCr 2.6mg/dL, bicarb 16mEq/L UA: Dip 2+ blood, 1+ protein, RBC casts on micro

What is the cause of his AKI?

- A) ATN
- B) GN
- C) AIN

D) I have absolutely no idea....

Syndromes of AKI

Postrenal AKI

Upper Tract Obstruction
Intrinsic
Stone
Papillary Necrosis
Blood Clot
TCC (transitional cell carcinoma)
Extrinsic
Retroperitoneal Fibrosis
Malignancy
Ligation
Pelvic Mass
Lower Tract Obstruction
Urethral Stricture
BPH
Prostate Cancer
TCC of the bladder
Stones: bladder
Neurogenic bladder
Malpositioned Foley Catheter

Post-Renal AKI

- History of previous urinary tract obstruction or infection
- Look for *bladder outflow obstruction signs*
 - Dysuria, nocturia
 - Frequency, hesitation
 - Weakening of stream, enlarged prostate
 - Distended bladder, flank mass or tenderness
- Pelvic or retroperitoneal disease or surgery
- Complete anuria or wide variations in urine output

Normal urinalysis in the setting of progressive renal failure

82 y/o fell at home, R IT FX ORIF done, morphine PCA, POD#1 foley removed Admit labs : SCr 1.2mg/dL, POD#5 SCr 6.2mg/dL Med review – no NSAIDS, +diphenhydramine

What type of AKI? A) CA-AKI B) HA-AKI

C) Not coded as AKI

82 y/o fell at home, R IT FX ORIF done, morphine PCA, POD#1 foley removed Admit labs : SCr 1.2mg/dL, POD#5 SCr 6.2mg/dL Med review – no NSAIDS, +diphenhydramine

What type of AKI?
A) CA-AKI
B) HA-AKI
C) Not coded as AKI

82 y/o fell at home, R IT FX ORIF done, morphine PCA, POD#1 foley removed Admit labs : SCr 1.2mg/dL, POD#5 SCr 6.2mg/dL Med review – no NSAIDS, +diphenhydramine

What is needed to make a diagnosis?

- A) CMP to include serum BUN
- B) Urine dip and cell morphology
- C) Renal ultrasound
- D) None of the above
- E) All of the above

82 y/o fell at home, R IT FX ORIF done, morphine PCA, POD#1 foley removed Admit labs : SCr 1.2mg/dL, POD#5 SCr 6.2mg/dL Med review – no NSAIDS, +diphenhydramine

What is needed to make a diagnosis?

- A) CMP to include serum BUN
- B) Urine dip and cell morphology
- C) Renal ultrasound
- D) None of the above
- E) All of the above

82 y/o fell at home, R IT FX ORIF done, morphine PCA, POD#1 foley removed Admit labs : SCr 1.2mg/dL, POD#5 SCr 6.2mg/dL Med review – no NSAIDS, +diphenhydramine

What is the treatment for Mary's AKI?

- A) 0.5% NS IV fluid
- B) Foley
- C) Bolus dose furosemide
- D) Hold all medications
- E) All of the above

82 y/o fell at home, R IT FX ORIF done, morphine PCA, POD#1 foley removed Admit labs : SCr 1.2mg/dL, POD#5 SCr 6.2mg/dL Med review – no NSAIDS, +diphenhydramine

What is the treatment for Mary's AKI?

A) 0.5% NS IV fluid

B) Foley

- C) Bolus dose furosemide
- D) Hold all medications
- E) All of the above

- General paradigm
 - Discontinue all nephrotoxic agents
 - Ensure volume status and perfusion pressure
 - Consider functional hemodynamic monitoring
 - Monitor serum creatinine and urine output
 - Avoid hyperglycemia
 - Consider alternatives to radiocontrast procedures
 - Check for changes in drug dosing
 - Consider renal replacement therapy

- Outpatient
 - Stable vs unstable
 - Stable patients
 - Identify cause
 - Remove offending medication
 - Encourage fluids
 - Close interval follow to include lab monitoring
 - Unstable patients
 - ED evaluation
 - Admission to hospital

- Inpatient
 - Medical Floor vs ICU
 - Initial treatment usually the SAME
 - STOP offending medication(s)
 - Treat obstruction if present
 - Urinary catheter
 - Measure I/O's
 - Closely monitor vitals, labs

- Volume status
 - Most important aspect of HA-AKI
 - Volume responsiveness vs. Volume unresponsiveness
 - Often existing as a continuum

Hemodynamic support

- Fluid management
 - Initial management of most AKI
 - Choice of solution
 - Crystalloid vs. colloid
 - No significant difference in renal outcomes or mortality
 - Colloid considerably more expensive
 - In most case crystalloid is first choice
 - Exceptions:
 - Hemorrhagic shock
 - Hepatorenal Syndrome
 - Burn patients
 - Massive fluid resuscitation

ICU Treatment of AKI

- Vasopressors
 - Help in maintaining renal perfusion
 - Use AFTER intravascular volume replete
 - Vasomotor shock particularly helpful
 - Sepsis
 - Pancreatitis
 - Anaphylaxis
 - Burns
 - Liver failure

ICU Treatment of AKI

- Glycemic control
 - Stress induced hyperglycemia is common in ICU patients
 - Prior controversy in literature regarding high "tight" glycemic control is needed
 - KDIGO guidelines currently recommend target goal of 110-149 mg/dL

ICU Treatment of AKI

- Diuretics
 - Loop diuretics
 - Rationale decrease active Na transport therefore O2 demand
 - o May help to "wash out" debris from tubules
 - o Renal vasodilation, increased renal blood flow
 - Current recommendations
 - NOT for routine prevention/treatment of AKI
 - May be useful in managing fluid overload or electrolyte disturbances (potassium)

Cr rose 0.8 – 1.4, Tx with IV furosemide with improvement in fluid status however Cr continued to rise 2.0 > 3.6> 8.2 UOP diminished and now < 100 mL/day K+ is now 5.9 despite IV furosemide BPs unable to rise > 80 systolic despite 2 pressors

What is the best form of dialysis for Alvin?

- A. NONE
- B. Intermittent hemodialysis (IHD)
- C. Continuous renal replacement therapy (CRRT)
- D. I don't know; its why we consulted Neph!

Dialysis in the treatment of AKI

- Timing of renal replacement therapy
 - Optimal timing not defined
 - More and more studies have found no significant difference in "earlier" vs. "later"
 - Potential concerns
 - Risks of RRT
 - Hypotension
 - Arrhythmia
 - Membrane bio incompatibility
 - Vascular access complications
 - Use of anticoagulation administration
 - May delay renal recovery
 - May increase progression of CKD

Dialysis in the treatment of AKI

Timing

- Absolute indications
 - Severe hyperkalemia
 - Severe acidosis
 - Volume overload
 - Uremic complications
- Other considerations
 - Severity of underlying illness
 - Degree of dysfunction of other organs
 - Solute burden
 - Need for fluid input for nutrition or medications

Dialysis in the treatment of AKI

- Modality
 - IHD (intermittent hemodialysis)
 - SLED/EDD (sustained low-efficiency daily dialfiltration)/ (extended daily dialysis)
 - CRRT (continuous renal replacement therapy)
 - CVVH(F)
 - CVVHD
 - CVVHDF
 - SCUF

Dialysis in the treatment of AKI

Hemodialysis

- Blood runs countercurrent to dialysate
- Solute clearance by DIFFUSION
- <u>Size-dependent</u> process

Hemofiltration

- Fluid removed via pressure gradient
- Replaced with equal amount of replacement fluid
- Solute clearance by CONVECTION
- <u>Size-independent</u> process

Dialysis in the treatment of AKI

- Modality
 - How to choose?
 - Advantages of CRRT
 - Slower fluid removal
 - More hemodynamic stability
 - Better control of fluid balance
 - Slower control of solute concentration
 - Avoiding large fluctuations in fluid shifts
 - Greater flexibility
 - User-friendly machines
 - Advantages of IHD
 - Fast removal of toxins
 - Restricted treatment time frame
 - Cost

Prognosis

- Mortality remains high
 - Reported rates from 40% 70%
 - Features associated with higher mortality
 - Age
 - Sepsis
 - Respiratory failure
 - Liver failure
 - Thrombocytopenia

Prognosis

- Mortality
 - Linear relationship between stage of AKI and mortality
 - Stage 1 AKI (RR of 2.4)
 - Stage 2 (RR of 4.15)
 - Stage 3 (RR of 6.37)
- Renal recovery in survivors
 - Varies depending upon stage of AKI
 - Persistent RRT required in around 20% of Stage 3 AKI

Alvin

Cr rose 0.8 – 1.4, Tx with IV furosemide with improvement in fluid status however Cr continued to rise 2.0 > 3.6> 8.2 UOP diminished and now < 100 mL/day K+ is now 5.9 despite IV furosemide BPs unable to rise > 80 systolic despite 2 pressors

What is the best form of dialysis for Alvin?

- A. NONE
- B. Intermittent hemodialysis (IHD)
- C. Continuous renal replacement therapy (CRRT)
- D. I don't know; its why we consulted Neph!

AKI Pearls

- If you look for it, you will find it
- CA-AKI is more common than you think
- Inpatient management of AKI is evolving and a lecture all by itself
- 'Sick day rules' as championed by the UK will decrease CA-AKI
- Worldwide push to decrease AKI
 - 0by25
 - Think KidneyS

Which of the following is the best term to define a patient with acute kidney function changes?

- A. Acute Renal Failure
- B. Acute Renal Injury
- c. Acute Kidney Injury
- D. Acute Kidney Dysfunction

Which of the following is the best term to define a patient with acute kidney function changes?

- A. Acute Renal Failure
- B. Acute Renal Injury
- c. Acute Kidney Injury
- D. Acute Kidney Dysfunction

Which of the following cause AKI?

- A. Dehydration
- B. Medications
- c. Obstructive uropathy
- D. All of the above

Which of the following cause AKI?

- A. Dehydration
- B. Medications
- c. Obstructive uropathy
- D. All of the above

Pre-Test #3

Which of the following would NOT be an indication to initiate renal replacement therapy?

- A.Blood pH < 7.1, refractory to bicarbonate therapy
- B.Serum potassium > 6.5mEq/L with peaked twaves on EKG, refractory to medical therapy
- C.Fluid overload w/ oliguria in a cardiac surgery patient not responding to diuretic therapy
- D.Blood Urea Nitrogen level > 100mg/dL, despite volume expansion with NS

Pre-Test #3

Which of the following would NOT be an indication to initiate renal replacement therapy?

- A.Blood pH < 7.1, refractory to bicarbonate therapy
- B.Serum potassium > 6.5mEq/L with peaked twaves on EKG, refractory to medical therapy
- C.Fluid overload w/ oliguria in a cardiac surgery patient not responding to diuretic therapy
- D.Blood Urea Nitrogen level > 100mg/dL, despite volume expansion with NS

THANK YOU!

Becky Ness, PA-C, MPAS, DFAAPA, FNKF Instructor of Medicine, Mayo College of Medicine Division of Nephrology and Hypertension

AANPA

n.becky@gmail.com

