Infective Endocarditis & Prosthetic Joint Infections

Michael Clyde Doll, MPAS, PA-C, DFAAPA mdoll@geisinger.edu

Disclosures

None

Learning Objectives

- Properly diagnosis and treat patients with endocarditis
- Properly diagnosis and treat patients with prosthetic joint infections
- Explain the mobility, mortality and economic burden of both endocarditis and prosthetic joint infections
- Identify the differences and similarities of patients with endocarditis and prosthetic joint infections
- Discuss how 'frontline' (Primary Care, Urgent Care, ICU, ER, MedSurg) PAs can have a timely and vital influence on patients with these serious infections

- In the spring of 2019, 64 year old male, presented with fever, chills, anorexia, weight loss, bacteremia & an acute right CVA
- Prior history of mechanical AVR & known TAA
- TEE revealed prosthetic valve endocarditis (PVE)
- Bacteria: Enterococcus
- Patient underwent Bentall procedure (Bioprosthetic AVR with synthetic tube graft replacement of root & ascending aorta) followed by 6 weeks of IV antibiotics
- Infection further complicated by CHB, requiring placement of PPM prior to discharge

Endocarditis

- In fall of 2019, after 2 months of a painful right prosthetic knee
- Aspiration of the knee revealed a prosthetic joint infection (PJI)
- Bacteria: Enterococcus
- Patient underwent 2-stage operation (explant of TKA HW/implant of antibiotic spacer, 6 weeks of IV antibiotics, followed by reimplantation of TKA HW/explant of antibiotic spacer)

Prosthetic Joint Infection

Prosthetic Joint Infection

Infective Endocarditis and Prosthetic Joint Infection

- Same Bacteria
- Same Patient
- Same PA

Incident Rates of Infective Endocarditis (IE)

- 3rd-4th most common life-threatening infection syndrome
- Increasing M&M
- Relatively rare (3-7/100,000 person-years)

Incident rates of Infectious Endocarditis (IE)

- "The average general practitioner will see one case every 20 years" Cahill TJ, et al. BMJ 2017;358:j3942
- Symptoms of subacute IE: fever, chills, sweats, malaise, anorexia, weight loss
- This can result in the following:
- Inappropriate antibiotic treatment (interferes w/ sensitivity of subsequent blood cultures)
- Delays in diagnosis/appropriate therapy
- Educational opportunity for "frontline" providers

CONCLUSION!!!

 Infective Endocarditis is a complex disease with the potential for multi-system complications.
Patients with this disease always require a combined Medical – Surgical approach

CABG Patient

Infective Endocarditis (IE)

Surgical Issues

- Effects of Anatomy & Cardiac Physiology
- Native vs. Prosthetic Valve Endocarditis
- Diagnosis
- Timing of Surgery
- Procedure(s)

Infective Endocarditis (IE)

Critical Care Issues

- Control & Eradication of Infection
- Hemodynamic Management
- Management of Complications

Surgical Anatomy & Cardiac Physiology

Valvular Consequences

- Insufficiency Native vs. Prosthetic
- Destruction/Disruption
- Emboli

Factors Predisposing to the Development of Infectious Endocarditis (IE)

- Age > 60 years
- Male
- IVDA, esp recurrent

Drug dependence-associated IE

 "These users (opioid <u>nonmedical</u> users of prescription pain relievers) are 40x more likely than the general population to use heroin or other injection drugs"

Fleischauer AT, et al. MMWR 2017;66:568-73.

Incidence of hospital discharge diagnoses of drug dependence-associated IE

Fleischauer AT, et al. MMWR 2017; 66:569-73.

Hospital costs for patients w/ drug dependence-associated IE

Factors Predisposing to the Development of Infectious Endocarditis (IE)

- Age > 60 years
- Male
- IVDA, esp recurrent
- Poor dentition/dental infection
- VHD
- CHD
- Prosthetic Heart Valve(s)

- Prior bout of endocarditis
- Presence of intravascular device (PPM/ICD, HD/CV caths)
- Chronic HD
- HIV infection (independent risk factor from HIV)
- Immunosuppression

Infective Endocarditis Surgical Pathology

- What are Vegetations?
 - Composed of *microorganisms* that are w/in layers of fibrin & platelets
 - Layers pose mechanical barrier btw antibiotics & embedded microorganisms
- Leads to tissue destruction, perforation, chordal rupture
- Infection can then extend from valve leaflets to annulus & beyond
- Vegetations can "break apart" & then embolize

Prosthetic Valve Endocarditis (PVE)

Prosthetic Valve Endocarditis (PVE)

Surgical Anatomy & Cardiac Physiology

Myocardial Consequences

- Sudden changes in volume & pressure loads from sudden valve incompetence
- Pressure may cause abscesses to progress to fistulous tracts>intra-cardiac/pericardial shunts

Intra-cardiac spread of infection

- Aortic to Mitral & Vice Versa
- Involvement of conduction system*
- Security of prior valve repair / replacement

Diagnosis of Endocarditis

- Classic manifestations:
- 1. Sustained bacteremia or fungemia
- 2. Evidence of active valvular involvement
- 3. Presence of peripheral emboli
- 4. Immunologic phenomena
- Modified Duke Criteria: Stratifies patients w/ suspected IE into 3 categories:

<u>Definite</u>: 2 major criteria, or 1 major criterion & 3 minor criteria, or 5 minor criteria criteria <u>Possible</u>: 1 major criterion & 1 minor criterion, or 3 minor criteria <u>Rejected</u>: another firm diagnosis, resolution of syndrome < 4 days of antibiotics, no pathological evidence of IE @ surgery/autopsy < 4 days of antibiotics

Modified Duke Criteria for Diagnosis of IE

Major Criteria

- 1. Positive blood cultures for typical IE organisms
- 2. Evidence of endocardial 2. involvement (oscillating 3. intracardic mass/vegetation on valve or supporting structures, annular/septal abscess, new valve regurgitation, new partial dehiscence of PV)
- Minor Criteria
- 1. Predisposing heart condition or IVDA
- 2. Fever > 38
 - Vascular phenomena: major arterial emboli, septic pulm emboi, mycotic aneurysm, intracranial hemorrhage, conjunctival hemorrhage, Janeway lesions
 - Immunological phenomena: glomerulonephritis, Osler nodes, Roth spots, rheumatoid factor
 - 5. Positive blood culture for an atypical major criteria bacteria

Diagnosis of Infectious Endocarditis

Signs and Symptoms

- CHF
- Emboli

Progression of CHF

Diagnosis of Endocarditis

Emboli ~ small

Petechiae – finger tips/toes; most common Splinter hemorrhages - nonblanching, linear, reddish-brown nail bed lesions Osler nodes – painful, violaceous nodules found in the pulp of fingers & toes Janeway lesions – macular, nonpainful, erythematous lesions of the palms & soles Roth spots – exudative, edematous hemorrhagic retinal lesions

Petechiae Splinter hemorrhages Osler nodes Janeway lesions Roth spots

Diagnosis of Endocarditis Emboli ~ large

Diagnosis of Endocarditis Emboli ~ large

Risk of Embolization

- Occurs 22-50% of cases of IE
- Up to 65% involve CNS, w/ >90% lodging in branch distribution of MCA
- Most occur w/in first 2-4 wks of antibiotic therapy
- ^risk: vegetation size, mitral valve involvement, staphylococcal pathogenesis

Diagnosis of Infectious Endocarditis (IE): Echocardiography

- TTE should be done
 ASAP for suspected
 native IE
- TEE should be the study of choice for suspected <u>PVE</u>

Timing of Surgery

Table 5. Clinical and Echocardiographic Features That Suggest Potential Need for Surgical Intervention

Vegetation

Persistent vegetation after systemic embolization

Anterior mitral leaflet vegetation, particularly with size >10 mm*

≥1 Embolic events during first 2 wk of antimicrobial therapy*

Increase in vegetation size despite appropriate antimicrobial therapy*†

Valvular dysfunction

Acute aortic or mitral insufficiency with signs of ventricular failure†

Heart failure unresponsive to medical therapy†

Valve perforation or rupture†

Perivalvular extension

Valvular dehiscence, rupture, or fistula†

New heart block + ‡

Large abscess or extension of abscess despite appropriate antimicrobial therapy†

Surgery in Patients w/ Prior Emboli/Hemorrhage/Stroke

- If stroke small/subclinical, w/out hemorrhage, w/ residual vegetation > consider surgery
- If stroke severe or hemorrhagic > delay surgery
 @ least 4 weeks

Mycotic Aneurysms (MAs)

- Uncommon yet dangerous complication
- Caused by septic embolization of vegetations to the arterial vasa vasorum (intraluminal space) w/ subsequent infectious spread through intima & outward through the vessel wall
- Frequency of occurrence: IC arteries>visceral arteries>UE/LE arteries

Intracranial MAs

- Dangerous complication, overall mortality 60% (unruptured 30%, ruptured 80%)
- Most commonly occur @ branch of MCA
- Presentation: Severe HA, AMS, focal deficits, erythrocytes/leukocytes/^protein in spinal fluid

Extracranial MAs

- Asymptomatic until leakage/rupture
- Hepatic artery: hematemesis, hematobilia, jaundice
- Renal artery: arterial HTN, hematuria
- Small/large bowel: massive bloody diarrhea

Surgery for Native Valve IE

- Debridement / Resection of all infection
 - Anatomic considerations
 - Coronary anatomy
 - Conduction pathways
 - Septal walls
- Native Valve Endocarditis
 - Valve Repair / Vegetectomy
 - Valve Replacement
 - Root Replacement

ENDOCARDITIS Mitral Valve - Vegetectomy

ENDOCARDITIS Mitral Valve - Vegetectomy

ENDOCARDITIS Mitral Valve – Repair of Perforated Leaflet

ENDOCARDITIS Tricuspid Valve - Vegetectomy

Surgery for Prosthetic Valve IE

- Debridement / Resection of all infection
 - Anatomic considerations
 - Coronary anatomy
 - Conduction pathways
 - Septal walls

•

- **Prosthetic** Valve Endocarditis
 - Re-replacement of Valve
 - Aortic Root Replacement

Endocarditis Aortic Valve Homograft w/ Root Replacement

Infective Endocarditis

Goals of Surgery

- Excise all infected tissue
- Patch all the holes &/or close fistulas
- Repair/Replace the valve(s)

Infective Endocarditis

Critical Care Issues

- Control, Eradication & Sterilization of Infection
- Hemodynamic Management
- Management of Complications

Control & Eradication of Infection

Broad Spectrum to Narrow, Specific Antibiotic Rx, in consultation with *Infectious Disease specialist*

Duration is prolonged (>4 wks) & parenteral, OPAT

<u>Microbiology</u>

- Staphylococci* –MRSA, MSSA, Coag Neg
- Enterococci
- Streptococci viridans, bovis
- Gram Negative
- Polymicrobial
- Fungi

Culture Negative or Maranic Endocarditis

Management of Low Cardiac Output

• Optimize the 5 Basic Parameters:

Heart rate / Rhythm Preload Afterload Contractility Surgical Result • Rx Mechanical/Anatomic Problem

Consider Assist Device~ECMO

Hemodynamic Management

- Management of Resolving CHF
- Conduction Abnormalities / Arrhythmias
- Control of Hypertension
- Monitoring for Disruption of Repair / Replacement
 - PE New Murmur? > ECHO

Management of Complications

- CV : MI, CHF, Septic Shock, A-V Block, Arrhythmias
- Resp: Septic Emboli, Pneumonia, TRALI, ARDS
- Renal: AKI, Renal Emboli
- GI: Mesenteric emboli, splenic abscess/infarction, delayed splenic rupture, mycotic aneurysms
- Neuro: Embolic CVAs, Retinal emboli, mycotic aneurysms
- Hem: Coagulopathies/Anticoagulation Related
- Endo: Adrenal Insufficiency
- ID: Sepsis, Septic Shock, Septic Emboli

Summary

Infective Endocarditis is a complex disease that *always* requires a combined Medical – Surgical approach

- Timing of each component of care is vital
- Specificity & duration of medical therapy is key
- Manage hemodynamics ~ pre & post-op
- Surgery adjusted to the anatomic situation &/or changes

Endocarditis has an increased potential for Multi-System complications over "traditional" open heart surgery and other infectious diseases

Incident Rates of Total Joint Arthroplasties (TJA)

- By 2030, total number of TKAs will increase to 3.48 million/yr
- By 2030, total number of THAs will increase to 572,000/yr
- In addition, shoulder, elbow & ankle arthroplasties are ^ in #'s
- As the total # cases ^, so will the total # of infections

Incident Rates of Periprosthetic Joint Infections (PJI)

- About 1-3% of all primary TJAs
- Up to 3-10% of all revision arthroplasties
- Leading cause of TKA revisions & 3rd leading cause of THA revisions

Healthcare Costs of PJIs

- In 2001, the costs of revision arthroplasties due to infection was about \$320 million, ^ to \$566 million in 2009, & projected to \$1.62 billion by 2020
- Prevention of PJI is therefore imperative
- Presently, the increase in the burden of PJIs is outpacing developments in prevention
- Earlier diagnosis of PJI, followed by appropriate & aggressive surgical treatment can decrease the costs and mortality associated with PJI

Definition of PJI

- 1. Sinus tract communicating w/ prosthesis⁶; or
- A pathogen is isolated by culture from 2 or more separate tissue or fluid samples obtained form the affected prosthetic joint⁶; or
- 3. When 4 of the following 6 criteria exist:
- ^serum erythrocyte sedimentation rate (ESR)¹ & serum Creactive protein (CRP)² concentration,
- ^synovial WBC count³ or ++ leukocyte esterase test strip³
- ^synovial polymorphonuclear percentage (PMN%)²
- Presence of purulence* of affected joint,
- Positive histological analysis of fluid/tissue,
- A single positive culture,
- ^synovial C-reactive protein (CRP)¹
- Positive Synovasure Alpha Defensen³

Definition of PJI

Major Criteria

- Sinus tract communicating w/ prosthesis⁶,
- A pathogen is isolated by culture from 2 or more separate tissue or fluid samples obtained form the affected prosthetic joint⁶,

Scoring:

>6 infected2-5 possible infection0-1 no infection

Minor Criteria

- Elevated <u>serum</u> erythrocyte sedimentation rate (ESR)¹ & <u>serum</u> Creactive protein (CRP)² concentration,
- Elevated <u>synovial</u> WBC count³ or ++ leukocyte esterase test strip³,
- Elevated <u>synovial</u> polymorphonuclear percentage (PMN%)²,
- Presence of purulence* of affected joint³,
- Positive histological analysis of fluid/tissue³,
- A single positive culture²,
- Synovasure (Positve Alpha Defensin³ or Elevated <u>synovial</u> C-reactive protein (CRP))¹

Sinus Tracts

Presentation of PJI

Patient Symptoms

- Pain
- Joint Swelling
- Joint Effusion
- Impaired ROM
- "It just doesn't feel right"
- "It just doesn't look right"
- Less common: fever, chills, leukocytosis*

Radiology

- Loosening/subsidence of implants
- Periprosthetic lucency
- Periprosthetic fracture
- Periosteal new bone formation

Prosthetic Joint Infections

Prosthetic Joint Infections

Risk Factors

- Obesity, esp BMI over 40
- Low BMI, <25
- Diabetes
- Rheumatoid arthritis
- Immunosuppression
- Malignancy
- Chronic renal failure
- Revision surgery
- Early post op issues (hematoma, SSI, drainage, wound dehiscence, need for transfusion)

Revision Arthroplasty: Reasons for Aseptic Failure

- Loosening @ the bone-cement interface
- Periprosthetic fracture
- Fracture of prosthetic material itself
- Wear
- Implant malposition
- Dislocation-instability
- Materials fatigue

When planning for & performing revision surgery, you must rule out infection

Classification of PJI

- Stage 1/early: symptoms start w/in first 4 to 8 wks post op
- Stage 2/delayed: presents 3 24 mons post op*
- Stage 3/late: more than 24 mons post op
- Stage 4/silent: a condition in which a positive culture is captured @ the time of revision in asymptomatic patient
- Early>usually virulent organism (S. aureus)
- Late>usually hematogenous
- Silent>low-virulence organisms (coag neg staph, propionbacterium acnes)

Treatment of PJI

- Gold Standard: 2-stage exchange. Resection of implants, placement of temporary antibioticimpregnated cement spacer, 6 wks of IV antibiotics & delayed component reimplantation
- Irrigation & <u>aggressive</u> debridement>acute onset of symptoms, implants well-fixed & aligned, antibioticsusceptible organism & sufficient soft-tissue coverage
- Goals of surgery: eradicate infection, restore painfree function & minimize PJI-related morbidity

Antibiotic-impregnated cement spacer

Role of Biofilm

- Complex communities of microorganisms embedded in an extracellular matrix that forms on surfaces
- Extracellular matrix is composed of polysaccharides, proteins and/or extracellular DNA
- Bacteria within biofilm is protected from antimicrobials & the host immune system
- Biofilm forms on joint prosthesis
- Surgical removal of prosthesis is mandated in order to achieve a cure

Inability to eradicate infection

- Re-implantation of implants followed by life-long antibiotic suppression therapy
- Resection of implants without re-implantation (hip>resection arthroplasty)
- Amputation (knee-AKA, hip-disarticulation)

Prosthetic Joint Infections

What to do if you suspect a PJI

- If patient has painful TKA/THA > 1 yr after surgery, obtain XRs & Serology* (ESR/CRP)
- If TKA/THA feels loose, unstable or "just doesn't feel right", obtain XRs & Serology
- If HW on XRs reveals loosening, subsidence, debonding, obtain serology & do aspiration (knee>in clinic, hip>in OR)
- Refer to a total joint trained surgeon

Joint Aspiration

Joint Aspiration

Endocarditis & Prosthetic Joint Infections: Similarities & Differences

	IE	PJI
Initial presentation	Subtle>>>obvious	Subtle, less so obvious
Sepsis, SIRs, Shock	More likely	Unlikely
Initial Practice Location	=	=, but can be Ortho
Est. Diagnostic Criteria	Yes	Yes
Criteria Followed	More likely	Less likely
Equal Surgical Expertise	More likely	Less likely
Mortality	Higher	Lower
Morbidity	Higher	Lower but not by much
High Health Care Costs	=	=
Prevalence	Going up	Staying same
Cases w/ neg culture	~10%	~2-18%
Episode of care	Typically short	Typically prolonged
Eradication w/ surgery	Yes, less in recurrent IVDA	Yes, lower if Rx delayed
Bad to have	=	=

Endocarditis & Prosthetic Joint Infections: Similarities & Differences

	IE	PJI
Initial presentation	Can be subtle then obvious	Subtle, can be obvious
Sepsis, SIRs, Shock	More likely	Unlikely
Initial presentation location	=	= more likely Ortho
Established diagnostic criteria	Yes	Yes
Criteria followed	More likely	Sometimes less likely
Mortality	Higher	Lower
Morbidity	Higher	Lower, but not by much
High health care costs	Yes	Yes
Prevalence	Going up	Staying same
Culture negative cases	~10%	~2-18%
Episode of care	Typically, short	Typically, long
Eradication w/ surgery	Yes, less so w/ recurrent IVDA	Yes, lower if treatmer

Endocarditis & Prosthetic Joint Infections

- Cases of infectious endocarditis and prosthetic joint infections carry significant morbidity
- Both conditions have many similarities, yet some obvious differences
- Both conditions require promote diagnosis, proper treatment and appropriate consultation(s)

