"Lost at Sea" in ASD?

Techniques for Improved Communication and Examination of Pediatric Patients with Autism Spectrum Disorders

> Dr. Thomas Meersman DHSc, MMSc, PA-C Assistant Professor North Central College MSPAS Program AAPA 2021 Conference

Disclosure

• I have no financial relationships with commercial interests to disclose

Pre-test Question 1

- All of the following represent established approaches to facilitate the physical examination of a resistant/agitated patient with ASD <u>except</u>:
 - A. Use of distractive tools such as those found in a coping kit.
 - B. Using specific and detailed written and verbal instructions to outline the entire procedure at all once.
 - C. Modifying the physical environment to tailor the stimuli experience (i.e.- dimming lights, providing head phones, and chewy tubes).
 - D. Providing visual cues of the procedure/exam using visual models such as dolls or stuffed animals prior to performing the procedure.

Pre-test Question 2

- All of the following are methods of alternative communication that you may see commonly used by children with ASD to assist their communication and decrease anxiety/fear with health care providers during their exam <u>EXCEPT</u>:
 - A. Speech Generation Devices (SGD)
 - B. Picture Exchange (PE)
 - C. Functional Magnetic Resonance Imaging (fMRI) enabled speech device
 - D. Micro Switches

Pre-test Question 3

- Based on research performed on the physical examination of children with ASD, which of the following techniques is NOT a preferred technique for the routine behavioral management of fear/anxiety related to physical exam:
 - A. Intermittent graduated exposure to fearful stimuli
 - B. Tell-Show-Feel-Do (T-S-F-D)
 - C. Differential reinforcement of other behavior (DRO)
 - D. General sedation

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

The Reality of Medical Care in Special Needs Populations

- Children with ASD and developmental disorders (DD)
 - Often require more frequent medical care
 - Experience more difficulties during the history and physical examination than neurotypical peers (Cuvo et al., 2010).

The Fallout of Traditional Histories in ASD

- Health care providers often fail to obtain a detailed medical evaluation relying on:
 - Parents/caregivers
 - Incomplete preexisting medical records (Cuvo, Readan, Ackerlund, Huckfeldt, & Kelly, 2010).

Importance of Performing Proper Exams

- Negative health care experiences can adversely affect children with ASD/DDs perceptions of medical care for future visits
- Targeted behavioral support can facilitate the examination of this unique patient population, preventing child:
 - Stress
 - Adverse events
 - Future aversion to medical care (Drake, Johnson, Stoneck, Martinez, & Massey, 2012, p. 215)

Clinical Scenario

6-year-old male patient, named Jack, presents to your outpatient clinic with chief complaint of "he feels warm" for the past 2 days per the parent. You observe as the patient is wheeled into his room by stroller/community access device that Jack is grunting, repeating the words "all done", watching a video on a tablet device, and constantly sucking on his finger. He appears agitated, makes poor eye contact with the nurse, and responds in a limited manner using "yes/no" answers to questions primarily with laminated cards his parent brought in for the examination. Your clinician coworker rolls their eyes, looks to you and says, "Well, I guess Jack is back again."

Clinical Scenario

- Your best course of action for Jack is:
 - A. Run and hide in the bathroom.
 - B. Take an early lunch.
 - C. Spend time catching up on charts and hope your colleagues see Jack instead.
 - D. Review his medical history and enter the room, discussing the history with the parent but never examining Jack due to "combativeness" and "non-compliance" during the clinical interaction.
 - E. None of the above.

Definitions (Autism Speaks, 2018)

- Autism Spectrum Disorder (ASD)
- DSM-5 Criteria Symptoms
 - Persistent deficits in social communication/interaction
 - Deficits in:
 - Social/emotional reciprocity
 - Nonverbal communicative behaviors
 - Developing, maintaining, understanding relationships
 - Restricted, repetitive patterns of behavior, interest, activities
 ⁽²⁺⁾
 - Stereotyped/repetitive movements/speech/use of objects
 - Insistence on sameness, routines, patterns
 - Restricted, fixated interests
 - Hyper/hyporeactivity to sensory inputs
 - Symptoms are not better explained by intellectual disability or developmental delay

Demographics – ASD

- Prevalence of ASD (Autism Speaks, 2018; Monz, Houghton, Law, & Loss, 2019)
 - 2018 CDC estimates:
 - 1 in 37 Boys
 - 1 in 151 Girls
 - Boys > 4 x more likely to have ASD than girls
 - Most diagnosed after age 4
 - Reliable diagnosis as early as 2-years-old

Important Terminology-Developmental Disorders(Harris, 2013)

- Please avoid:
 - Mental Retardation(MR)/"Retarded"
 - Adopted by medical societies in 1961
 - Replaced terms feeblemindedness, idiocy, and mental subnormality.
 - All are now considered pejoritive
 - APA revised preferred terminology in 2013 with DSM-5 and ICD-11.

• In US, federal statute has replaced MR with Intellectual Disability (ID).

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

Anatomy and Pathophysiology of

Autism (Lathe, 2006)

- MRI
 - Abnormal size of limbic structures
 - Fewer hippocampal dendrites, abnormal hippocampal volume
 - Higher neuronal density in amygdala, abnormal volume
- Histology
 - Prefrontal and temporal lobe cell columns increased in number, but smaller and fewer neurons per column
- fMRI
 - Examine blood flow and energy utilization
 - Reduced blood flow to temporal lobes
 - Asperger abnormal functional integration amygdala and parahippocampal gyrus
- Reduced neuronal metabolite in hippocampus/amygdala and cerebellum
 - Indicates diminished metabolic activity in these areas
 - Sign. Correlation between parent rated ASD severity and limbic neuronal density
- SPECT
 - Decreased blood flow to left temporal lobe
- PET
 - Decreased blood flow to temporal lobes

Pathophysiology of Autism - ASD Phenotype (Lathe, 2006)

- Memory
 - Hippocampal dependent memory affected in ASD
 - Repeat training can overcome hippocampal damage/lesions and also in ASD • Difficulty relearning "new rules"
- Anxiety/Stress
 - Associated with hippocampal function in ASD
- Desire for sameness
 - Decreased blood flow to right amygdala/hippocampus associated with obsessive desire for sameness
- Perception of facial emotions
 - Associated with limbic atrophy, facial recognition temporal lobe
 - Social interaction
 - Amygdala lesions associated with impaired evaluation of social stimuli
- Language
 - Limbic lesions associated with speech/language impairment
- Stereotypical/repetitive behavior
 - Associated with hippocampal lesions
- **Sensory Deficits**
 - Temporal lobe/limbic lesions associated with auditory agnosia ("hearing blindness")

Anatomy and Pathophysiology of

Autism (Lathe, 2006)

- Consensus:
 - Abnormalities in the medial temporal lobe, hippocampus, and amygdala
 - Cognitive, perceptual, social and language impairments of ASD
 - Cerebellar abnormalities
 - Impaired coordination/posture/locomotion

Sensory Experience in ASD CGI Animated Shorts : "Listen" - by Alexander Bernard ... - YouTube - 2:41. Bernard, A., & Fernandez, M.(2016, June 7). Listen Senior Film.[Video File]. Retrieved from https://www.youtube.com/watch?v=ibylThIMErE DMV...

Sensory Experience of ASD

- Sensory processing difficulties are universally present in children with ASD (Lathe, 2006)
 - Hearing deficits in 8.6%
 - Varying visual impairments in 25%
- Sensory difficulties correlated with maladaptive behaviors (Nieto, López, & Gandía, 2017)
 - Key driver of parental stress
- Sensory disturbances may involve acoustic, visual, tactile, and pain stimuli (Lathe, 2006)
 - Heightened response
 - Reduced response

Hypersensitivity (over responsive)	Hyposensitivity (under responsive)	Impaired Sense	Accommodation in Clinic
	Poor response to visual cues	Vision	Pictures/items with high contrast
	Poor Balance/Coordinatio n	Proprioceptive/Vesti bular	Opportunities for rocking/swinging/w eighted vests or blankets
	Oral seeking	Tactile/oral	Chewable tubes
Spectrum of light		Visual	Room without fluorescent lamps
Loud Noises		Auditory/vestibular	Ear plugs/Headphones/ Close door
Sensitivity to touch		Tactile	Request permission prior to touching
Bright light		Visual	Dimmed lights/visor/sunglass es

Hypersensitivity (over responsive)	Hyposensitivity (under responsive)	Impaired Sense	Accommodation in Clinic	
Withdrawing from soft touch		Nociceptive/Tactile	Avoid rough stimuli	
Avoidance of textures		Tactile	Avoid painful/rough stimuli	
Smell		Gustatory	Avoid perfumes, colognes, or scented items	
	Seek out strong tastes/odors	Gustatory	Flavored chewable tubes	
	Unresponsive to loud noises	Vestibular/Auditory	Noisy toys, play loud music, running commentary	
(Brownlee, 2010; Fun and Function, 2018; Developmental Delay, 2014; Newman, 2008)				

Big Picture Check

- Which of the following statements are TRUE regarding triggers of sensory stimuli for children with ASD?
 - A. Hypersensitivity to stimuli is the most common general sensory trigger.
 - B. Hyposensitivity to stimuli is the most common general sensory trigger.
 - C. Sensory triggers are similar in this population to those of neurotypical peers.
 - D. BOTH hyposensitivity and hypersensitivity are common general sensory triggers

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

Language and ASD

- Basic Terms
 - Speech (Mulhern et al., 2017) ability to articulate needs or thoughts
 - Vocalizations (Mulhern et al., 2017) act/process of producing voice sounds
 - Receptive language (Lim, 2011)
 - What the individual understands
 - Expressive language (Lim, 2011)
 - What is spoken/expressed by the individual

Language and ASD (Lim, 2011; Mulhern, 2017)

- "Inadequate" use of language key feature of ASD.
 - Early speech delay/regression
 - 1/3rd to ½ of individuals with ASD are unable to communicate at a level to express daily needs.
 - 25-30% of children with ASD fail to acquire speech without direct intervention
 - Possible linkage with comorbid intellectual disabilities
 - Challenges/inability to decode auditory speech

Language and ASD

(Lim, 2011; Mulhern, 2017)

- Verbal ASD children display aberrant speech:
 - Unusual word choice
 - Echololia
 - Unresponsiveness to questions
 - Lack of drive to communicate
 - Absent reciprocal "Give and take" of communication
 - Inability to understand body language, tone of voice, subtle language queues

Corresponding Characteristics in

ASD (Hudson, 2006)

• Level 1

- Responds to name
- Aware of others
- Indicates needs through gestures
- Prefers soothing touch
- Enjoys rhythm/repetition
- Orients to facial expression

• Level 2

- Acquires language
- Engages in discovery/inquisition
- Imitation/play
- Prefers structure/limits
- Requests help/communicates needs
- Gains control of body/motor skills

Corresponding Characteristics in

ASD (Hudson, 2006)

- Level 3
 - Develops imagination
 - Mimics adults
 - Able to provide detail
 - Understands rules/orders
 - Greater awareness of body
 - Increase language

• Level 4

- Seeks details
- Tells others rules
- Maintains routines
- Makes plans, more structured
- Gains reasoning skills

Corresponding Characteristics in

ASD (Hudson, 2006)

- Level 5
 - Establishes goals
 - Aware of peer opinions
 - More advanced problem solving
 - Weighs options/outcomes
 - Abstract thinking
 - Understands sequence of events
 - Makes personal choices

Corresponding Characteristics in

ASD (Hudson, 2006)

- Developmental checklists
 - Used to determine developmental level
 - Tailor make Participation and Information Plans. Ex.-
 - Medical interaction MRI
 - Developmental level Level Two
 - Information processing characteristics
 - visual learner
 - overstimulated by people
 - needs processing time
 - Developmental level considerations -
 - Simple, visual steps
 - Use repetition
 - Comforted by close contact, holding preferred object
Language Considerations

- Challenges with speech acquisition affect quality of life
 - Decreased independence
 - Decreased social adaptive functioning
 - Struggles integrating with peers
 - Comorbid behavioral difficulties and language deficit common

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns Continued...
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

Objects of Reference

• Visual representation of the tasks asked of the individual (Goldbart et al., 2014).

2/8/2021

Speech Generation Devices (SGDs)

(Hagan and Thompson, 2013)

- Advanced means of communication that uses touched symbols to trigger recorded messages.
- Mimic verbal speech
 - Speakers
 - Increase communication competence in children with ID
 - Studies also showing effectiveness in children with multiple disabilities and ASD

2/8/2021

Speech Generation Devices (SGDs)

Yes	No	More
ŷ		× · · · ·

Big Picture Check

- All of the following are methods of alternative communication that you may see commonly used by children with ASD/DD to assist their communication and decrease anxiety/fear with health care providers during their exam <u>EXCEPT</u>:
 - A. Speech Generation Devices (SGD)
 - B. Picture Exchange (PE)
 - C. Micro Switches
 - D. Functional Magnetic Resonance Imaging (fMRI) enabled speech device.

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

Phobias in ASD

• Communication tools and distractive items may decrease anxiety/stress and assist the clinician with performing an exam (Drake et al., 2012).

Distractive Items/Techniques

- Otoscope light onto a child's hand, moving forward and back to display the lights scope (Narula-Isaac, 2005)
 - Repetition of this routine beneficial in ASD
- Chewable toy (Drake et al., 2012)
- Light-up spinning fan toy (Drake et al., 2012)
- Bubble wand (Weltman, 2007).
- Tablet/Smartphone

Other Distractive Items in Coping Kit

- Sand
- Ear plugs / ear phones
- Visors/ hats
- Fidget toys
- Weighted vest / weighted blanket
- Soothing music
- Lava Tubes (bubbles/floating objects)

Big Picture Check

- Question: Besides communication, what are the other two main areas of focus for your physical examination of the ASD/DD child in this lecture?
 - A. Sedation
 - B. Restraints
 - C. Safety Concerns (anxiety/phobias)
 - D. Mobility Concerns

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

Mobility/Examination

• ASD (Breslin & Liu, 2015).

(Recommendations adapted from article assessing motor skills in school)

- Attire
 - Logos on clinician clothing may be distracting/point of perseveration
 - Child clothing preferences may be related to tactile input
 - Shirt tags
 - Loud clothing
- Equipment
 - Substitute for different color/texture if distracting or child is tactile sensitive
- Rely on support personnel

ASD Needs Assessment

- Noncompliance during exam (Cuvo et al., 2010):
 - Low passive compliance with exam requirements
 - Receptive language deficits
 - Challenges in learned behavior/mimicking
 - Visual discrimination
 - Opening mouth
 - Taking deep breath
- So how do we ensure we are meeting children's needs and assessing their level of functioning?

ASD Needs Assessment

- Ideal:
 - Quick
 - Easy
 - Parent/caretaker facilitated
 - Administered at the point of entry/triage for medical care
 - Non-invasive
 - Inexpensive
 - Take into consideration communication, anxiety and mobility for each child

Initial Assessment (Hudson, 2006)

- Childs Name:
- Medical Diagnosis:
- Reason for medical visit:
- Excels in these skills:
- Activities in which the child enjoys:
- Activities the child avoids:
- Motivators:
- Stress triggers:
- Adaptations already in place:
- Communication system in place:
- Known Sensory issues:
- Special Diet/food allergies:
- Optional add ons:
 - Mobility Needs:
 - S.W.O.T

Roadmap

- Intro/Demographics/Terminology
- Sensory Concerns
- Communication Concerns
- Safety concerns (Anxiety/Fear)
- Mobility concerns
- Research

Coping Kit Study

(Drake et al., 2012)

- Coping kits were used by clinical staff to:
 - Reduce anxiety
 - Distract
 - Provide additional communication to children with ASD
- Improved willingness to cooperate through an observed change in child behavior in 79% of cases (19/24).

Training Compliance with PE (Cuvo et al., 2010)

- Applied Behavioral Analysis (ABA)
- Health care procedures analyzed as a behavioral sequence of steps
 - Steps scored
 - Compliance analysis
- Reason for non-compliance identified with functional behavioral analysis techniques
- Developed tailored procedures based on the reasons for non-compliance

Training Compliance with PE (Cuvo et

al., 2010)

- Medical Office setting
- ASD and Pervasive Developmental Disorder NOS patients
- 10 component, 10-minutes physical exam performed by PA (pretest)
- 6 subjects
 - Aged 3-6 years-old
 - Male and female
- Inclusion Criteria
 - ASD/PDD-NOS
 - Failure to pass all 10 components of exam
 - History of exam non-compliance
 - Joint attention
 - Reactive to response consequences
 - Follow a visual schedule
 - Follow simple instructions

TEACCH (Orellana, Martínez-Sanchis, & Silvestre, 2014)

- Treatment and Education of Autistic and related Communication Handicapped Children Model Study
 - Study aim reduce use of unnecessary general anesthesia and high dose sedation during dental procedures using TEACCH
 - Participants with Aspergers, ASD, and PVD-NOS
 - N= 72
 - Children (n=38) 4-9 years, Adults (n=34)- 19-41
 - 10-component dental exam
 - Pre-test
 - Five training sessions
 - Post-Test

TEACCH (Orellana et al., 2014)

- Successive training approaches
 - Interact with exam equipment/instruments and with dentist
 - Tell-Show-Feel-Do (T-S-F-D) For example...
 - Tell what's going to happen, Show what they will do, Feel instrument, Do the exam technique.
 - Visual pedagogy 20 step-by-step photos
 - A-V modeling live modeling videotaped and played back
 - Behavioral trials step through 10 component exam
 - Auto modeling photos of subjects modeling behavior used later in practice sessions

TEACCH (Orellana et al., 2014)

Results

- Higher cognitive functioning pts showed larger improvements in exam completion and behavior.
- Pre-test 73% of children and 67% adults showed reluctant behavior
- Post-test- 81.6% of children and 100% of adults showed positive behavior

TEACCH (Orellana et al., 2014)

- Conclusions of this study
 - Value of teaching
 - Point of view of "culture of autism"
 - Take into account sensory profile of ASD
 - Effective protocol for ASD exams
 - Guideline can be extended to other health care practices
Exposure-based interventions in children with ASD (Gillis et al., 2009)

- Population
 - Mean age of 8.4 years
 - Majority non-verbal (10/18)
 - All students of specialized ASD school
- Results:
 - Repeated exposure to a clinical setting to fearful stimuli during a routine exam <u>decreased</u> fear-related behaviors
 - 83% of participants (15/18)
 - 3 remaining participants still fearful
 - Still showed progress after 38, 42, and 62 visits
 - Did not complete protocols, but still made progress

Exposure-based interventions in children with ASD (Gillis et al., 2009)

- Take home:
 - This type study may be difficult to implement clinically
 - May still be facilitated in:
 - Applied behavioral analysis (ABA)
 - Specialized ASD school
 - Intensive behavioral health setting

More Tricks of the Trade (M. Bellatuono,

personal communication, November 28, 2018)

- Use clear, simple language
- Give child time to process information
- Repeat instructions
- Redirect by using visual tools

Post-Test Question 1

- All of the following represent established approaches to facilitate the physical examination of a resistant/agitated patient with ASD <u>except</u>:
 - A. Use of distractive tools such as those found in a coping kit.
 - B. Using specific and detailed verbal and written instructions to outline the entire procedure all at once.
 - C. Modifying the physical environment to tailor the stimuli experience (i.e.- dimming lights, providing head phones, and chewy tubes).
 - D. Providing visual cues of the procedure/exam using visual models such as dolls or stuffed animals prior to performing the procedure.

Post-test Question 2

- All of the following are methods of alternative communication that you may see commonly used by children with ASD to assist their communication and decrease anxiety/fear with health care providers during their exam <u>EXCEPT</u>:
 - A. Speech Generation Devices (SGD)
 - B. Picture Exchange (PE)
 - C. Functional Magnetic Resonance Imaging (fMRI) enabled speech device
 - D. Micro Switches

Post-test Question 3

- Based on research performed on the physical examination of children with ASD/DD, which of the following techniques is NOT a preferred technique for the routine behavioral management of fear/anxiety related to physical exam:
 - A. Intermittent graduated exposure to fearful stimuli
 - B. Tell-Show-Feel-Do (T-S-F-D)
 - C. Differential reinforcement of other behavior (DRO)

• D. General sedation

Clinical Scenario Revisited

- Jack, 6-year old
- Needs assessment completed
 - Sensory
 - Oral hyposensitivity/seeking
 - Light hypersensitivity
 - Communication
 - Non-verbal, uses visual communication
 - Mobility
 - Stroller/Community Access Device
 - Anxiety
 - Hates ENT exams

Putting it all together

- Accommodations made
 - Lights
 - Chewy tube
 - Examine in stroller
 - Specialized Techniques used
 - Custom First-Then Board
 - T-S-F-D
 - Repetition
 - Video after completion

Take Home Points

- These are simple techniques
- Effective resources are inexpensive
- Donate your time (a.k.a.- hit the breaks)
- Identify and address sensory needs/ triggers-crucial to smooth outcomes. DON'T REINVENT THE WHEEL, ASK PARENTS!
- One child unnecessarily sedated/restrained/traumatized is one too many
- Small efforts make big differences in special needs
- Bail out your colleagues grab these charts- help these kiddos!

- Atkinson, R. (2013). Helping your child live with a developmental delay: A practical guide to the Dos and Don'ts. Stillwater, OK: New Forums Press.
- Autism Speaks (2018). DSM-5 Criteria. Retrieved from https://www.autismspeaks.org/dsm-5 criteria.
- Autism Speaks. (2018). Facts and Figures. Retrieved from https://www.autismspeaks.org/autism facts-and-figures
- Autism Speaks (2018). Sensory Issues. Retrieved from https://www.autismspeaks.org/sensory issues
- Benameur, K. (2018). Functional anatomy of our brains [Online Presentation]. Retrieved from www.coursera.com.
- Bernard, A., & Fernandez, M. [TheCGBros]. (2014, August 31). Listen [Video File]. Retrieved from https://www.youtube.com/watch?v=AIoTBfDZzU8
- Breslin, C. M., & Liu, T. (2015). Do you know what I'm saying? Strategies to assess motor skills for children with autism spectrum disorder. *The Journal of Physical Education, Recreation & Dance, 86*(1), 10-15. Retrieved from https://www.tandfonline.com/loi/ujrd20
- Brownlee, F., & Munro, L. (2010). Fuzzy Buzzy Groups for Children with Developmental and Sensory Processing Difficulties: A Step-by-Step Resource. London: Jessica Kingsley Publishers. Retrieved from http://p.atsu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db= e90xww&AN=299383&site=eds-live
- Cable, A. (2015). Communication disorders: School-aged children with intellectual disability. *CINAHL Rehabilitation Guide*. https://www.ebscohost.com/nursing/products/cinahl databases/cinahl-complete.

- CDC increases estimate of autism's prevalence by 15%, to 1 in 59 children (2018 April 26). Retrieved from https://www.autismspeaks.org/science/science-news/cdc-increases estimate autism%E2%80%99s-prevalence-15-percent-1-59-children
- Chew Stixx Orange Citrus Flavor (2018). Retrieved from https://funandfunction.com/chew_stixx
 orange-citrus-flavor.html
- Cuvo, A. J., Reagan, A. L., Ackerlund, J., Huckfeldt, R., & Kelly, C. (2010). Training children with autism spectrum disorders to be compliant with a physical exam. *Research in Autism* Spectrum Disorders, 4(2), 168-185. https://doi.org/10.1016/j.rasd.2009.09.001
- Developmental Delay (2014). Retrieved from https://www.listenandlearn.com.au/developmentaldelay/
- Drake, J., Johnson, N., Stoneck, A. V., Martinez, D. M., & Massey, M. (2012). Evaluation of a coping kit for children with challenging behaviors in a pediatric hospital. Pediatric Nursing, 38(4), 215-221. Retrieved from https://www.pediatricnursing.org/
- Facts and Figures. (2018). Retrieved from https://www.autismspeaks.org/autism-facts-and figures
- Ganz, J.B., Mason, R.A., Goodwyn, F.A., Boles, M.B., Heath, A.K., ...Davis, J.L.(2014). Interaction of participant characteristics and type of AAC with individuals with ASD:A meta-analysis. American Journal of Intellectual and Developmental Disabilities, 119(6), 516-535. http://dx.doi.org/10.1352/1944-7558-119.6.516.
- Gillis, J. M., Natof, T. H., Lockshin, S. B., & Romanczyk, R. G. (2009). Fear of routine physical exams in children with autism spectrum disorders: Prevalence and intervention effectiveness. Focus on Autism and Other Developmental Disabilities, 24(3), 156-168. Retrieved from https://doi.org/10.1177/1088357609338477

- Goldbart, J., Chadwick, D. & Buell, S. (2014). Speech and language therapists' approaches to communication intervention with children and adults with profound and multiple learning disability. International Journal of Language and Communication Disorders, 49(6), 687-701. https://doi.org/10.1111/1460-6984.12098
- Hagan, L., & Thompson, H. (2013). It's good to talk: Developing the communication skills of an adult with an intellectual disability through augmentative and alternative communication. *British Journal of Learning Disabilities, 42*, 68-75. http://dx.doi.org/10.1111/bld.12041.
- Harris, J. (2013). New terminology for mental retardation in the DSM-5 and ICD-11. Current Opinion in Psychiatry, 26(3). 260-262. https://doi-org.p.atsu.edu/10.1097/YCO.ob013e32835fd6fb
- Hudson, J. (2006). Prescription for success: Supporting children with austism spectrum disorders in the medical environment. Autism Asperger Publishing Co., Shawnee Mission, Kansas.
- Kaiser, A.P., & Roberts, M.Y. (2013). Parent-implemented enhanced milieu teaching with preschool children who have intellectual disabilities. *Journal of Speech, Language, and Hearing Research*, 56, 295-309. http://jslhr.pubs.asha.org/.
- Lancioni, G.E., O'Reilly, M.F., Basili, G. (2001). Use of microswitches and speech output systems with people with severe/profound intellectual or multiple disabilities: A literature review. *Research in Developmental Disabilities*, 22, 21-40.
- Lathe, R. (2006). Autism, Brain, and Environment. London: Jessica Kingsley Publishers. Retrieved from http://p.atsu.edu/login?url=http://search.ebscohost.com/login.aspx?direct =true&db=nlebk&AN=173689&site=ehost-live&scope=site
- Lim, H. A. (2011). Developmental speech-language training through music for children with autism spectrum disorders : Theory and clinical application. London: Jessica Kingsley Publishers. Retrieved from http://p.atsu.edu/login?url=http://search.ebscohost.com.p.atsu.edu/login.aspx?direct=tru &db=nlebk&AN=420408&site=eds-live

- Monz, B., Houghton, R., Law, K., & Loss, G. (2019). Treatment patterns in children with autism in the United States. *Autism Research*, 12 (3), 517-526. https://doi.org/10.1002/aur.2070
- Mulhern, T., Lydon, S., Healy, O., Mollaghan, G., Ramey, D., & Leoni, M. (2017). A systematic review and evaluation of procedures for the induction of speech among persons with developmental disabilities. *Developmental Neurorehabilitation*, 20(4), 207–227. https://doi.org.p.atsu.edu/10.3109/17518423.2016.1150360
- Narula-Isaac, M (2005). Ear exams: Watch the light. Listen for the "shhh". Contemporary Pediatrics, 22, (7). Retrieved from
- http://www.modernmedicine.com/modernmedicine/Pediatrics/home/40165
 Newman, S. (2008). Small Steps Forward : Using Games and Activities to Help Your Pre-School Child with Special Needs Second Edition (Vol. 2nd ed). London: Jessica Kingsley Publishers. Retrieved from http://p.atsu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=nle &AN=236366&site=eds-live
- Nieto, C., López, B., & Gandía, H. (2017). Relationships between atypical sensory processing patterns, maladaptive behaviour and maternal stress in Spanish children with autism spectrum disorder. *Journal of Intellectual Disability Research*, 61(12), 1140-1150. https://doi.org/10.1111/jir.12435
- Orellana, L., Martínez-Sanchis, S., & Silvestre, F. (2014). Training adults and children with an Autism Spectrum Disorder to be compliant with a clinical dental assessment using a TEACCH-based approach. *Journal of Autism & Developmental Disorders, 44*(4), 776 785. https://doi-org.p.atsu.edu/10.1007/s10803-013-1930-8
- Palisano, R. J., Shimmell, L. J., Stewart, D., Lawless, J. J., Rosenbaum, P. L., & Russell, D. J. (2009). Mobility Experiences of Adolescents with Cerebral Palsy. Physical & Occupational Therapy in Pediatrics, 29(2), 135–155. Retrieved from http://p.atsu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=s3h AN=38419578&site=eds-live

- Sensory Issues. (2018). Retrieved from https://www.autismspeaks.org/sensory-issues
- Vandereet, J., Maes, B.Lembrechts, D., & Zink, I. (201). Expressive vocabulary acquisition in children with intellectual disability: Speech or manual signs? *Journal of Intellectual and Developmental Disability*, 36(2), 91-104. http://dx.doi.org/ 10.1080/13668250.2011.572547.
- Weltman, E.A. (2007). Bubbles and the ART of medicine. Contemporary Pediatrics, 24, (3) 88. Retrieved from http://www.modernmedicine.com/modernmedicine/Pediatrics/home/40165
- Wexler, B.E., Holmes, A.S., Shore, S.M., and Rollins, P.R. (2015). Autism in the health care and community setting. International Board for Credentialing and Continuing Education Standards. 1-15.
- Zablotsky, B., Black, L.I., & Blumberg, S.J. (2017). Estimated prevalence of children with diagnosed developmental disabilities in the United States, 2014-2016. Retrieved from https://www.cdc.gov/nchs/products/databriefs/db291.htm

