Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

1

Commercial Support

This activity was sponsored by an educational grant from Novo Nordisk, Inc.

2

Accreditation Statement

- This activity has been reviewed by the AAPA Review Panel and is compliant with AAPA CME criteria. This activity is designated for 1.5 AAPA Category 1 CME credits. Participants should only claim credit commensurate with the extent of their participation.
- This activity was planned in accordance with AAPA's CME Standards for Commercial Support of Enduring Activities.

Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

5

Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

Faculty and Disclosure Statement

Christine Kessler MN, CNS, ANP-BC, BC-ADM, CDTC, FAANP Founder and Clinical Consultant, Metabolic Medicine Associates King George, VA

• NovoNordisk: advisory board for type 2 diabetes and speaker for obesity

Clarion Brands: research consultant for probiotic use with antibiotics
 Acella Pharmaceuticals: speaker for desiccated thyroid extract

7

8

Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

10

11

	nd Associated Disease Risk*			
	BMI (kg/m²)	Disease Risk* (Relative to Normal Weight and WC*		
		Men ≤ 40 in Women ≤ 35 in	> 40 in > 35 in	
Underweight	<18.5	-	-	
Normal	18.5-24.9	-	-	
Overweight	25-29.9	Increased	High	
Class 1 Obesity	30-34.9	High	Very High	
Class 2 Obesity	35-39.9	Very High	Very High	
Class 3 Obesity	≥ 40	Extremely High	Extremely High	

Obesity Management in Primary Care Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar

Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

12/01/20

1	۵
+	9

Genetic and Epigenetic Influences on Obesity Risk

20

Jenc	me-wide Asso	ociation Studies	(well over 100 known)
Gene	Tissue expressed	Gene product	Role in energy balance
MC4R	Adipocyte, hypothalamus, liver	Melanocortin 4 receptor	Appetite stimulation; monogenic cause of obesity
ADRB3	Visceral adipose tissue	β3-adrenergic receptor	Regulates lipolysis
PCSK1	Neuroendocrine cells (brain, pituitary, and adrenal glands)	Proprotein convertase 1	Conversion of hormones (including insulin) into metabolically active forms
BDNF	Hypothalamus	Brain-derived neurotrophic factor	Appetite stimulation; regulated by MC4R signaling and nutritional state
LCT	Intestinal epithelial cells	Lactase	Digestion of lactose
MTNR1B	Nearly ubiquitous	Melantonin receptor 1B	Regulation of circadian rhythms
TLR4	Adipocyte, macrophage	Toll-like receptor 4	Lipolysis, inflammatory reactions
ENPP1	Nearly ubiquitous	Ecotnucleotide pyrophosphatase/ phosphodiesterase 1	Inhibits tyrosine kinase activity of the insulin receptor, downregulating insulin signaling and decreasing insulin sensitivity
FGFR1	Adipose, hypothalamus	Fibroblast growth factor receptor 1	Hypothalamic regulation of food intake and physical activity
LEP. LEPR	Adipocyte	Leptin, leptin receptor	Appetite inhibition

22

Summary of Genetic Obesity Risk Data

• DNA is **not** destiny

- Those with the FTO gene variant are 67% more likely to develop obesity
 But they have a 27% greater ability to achieve weight loss with regular exercise
- Approximately 43% of Americans have a high polygenic risk for obesity
 - But this genetic risk does not guarantee obesity
 - + 16% 20% of those with very high polygenic obesity risk scores do not suffer from obesity
 - However, high polygenic obesity risk may make it harder to lose unwanted weight
- There are also rare single gene (monogenic) variants that greatly increase obesity, especially in childhood, and make it nearly impossible to lose weight

FTD, fat mass and obesity-associated. Thaker W. et al. Adolesc Med State Art Rev. 2017;28(2):379-4

Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

Examples of Environme Influence Epigenetics	ental Factors That N	Лау
Lack of sleep Chronotype: "eveningness" (altered circadian rhythm)	Emotional and physical stress (adult, childhood)	Food-induced pleasure (CHO craving and binging)
Endocrine-disrupting chemicals	High alcohol intake Over-	intake of calorie dense food (high in fat or CHO)
Low socioeconomic status	Reduced physical activity	Weight-inducing drugs (ie, beta blocker, SSRIs, antihistamines)
Gut microbiome dysbiosis	Smoking cessation (hypothyn	Endocrine disorders oidism, hypogonadism, PCOS)
CHO, carbohydrate; PCOS, polycystic ovary syndrome; SSRIs, selective serotonin r Feliciano EMC, et al. JAMA Pediatr. 2019;173(11):1049-1057.	reuptake inhibitors. spyright & 2020 AAPA, TOS, ILP. All rights reserved.	25

25

26

White Adipose Tissue (WAT)

Main form of adipose tissue

- Important endocrine organ that interacts with most other body organs
- Stores energy in the form of triglycerides
- An individual's fat mass is genetically set and maintained
- Normally found in subcutaneous adipose tissue (SAT) but can be found in ectopic locations (visceral and muscle)
- White adipose tissue composed of:
 - ~50% adipocytes
 ~50% other cells

 - Stem/precursor cells
 Preadipocytes
 Vascular, neural, and immune cells
 Leukocytes

8, Smith U. Atherosclerosis. 2015;241(1):27-35.

Obesity Management in Primary Care Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar

28

29

31

32

Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

_≺	
-	

<image>

42

43

48

Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

50

51

Obesity Management in Primary Care Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar

Obesity-Rela Energy Bala		ormonal Regulatio	n of Appetite and
Key I	lormone Cl	hanges Associated with We	eight Gain and Regain
Hormone	Source	Normal function	Alteration
Cholecystokinin	Duodenum	Suppresses appetite	Levels decrease during dieting and weight reduction
Glucose-dependent insulinotropic polypeptide	Duodenum, jejunum	Energy storage	Levels increase during dieting and weight reduction
Ghrelin	Gastric fundus	Stimulates appetite, particularly for high-fat, high-sugar foods	Levels increase during dieting and weight reduction
Glucagon-like peptide 1	lleum	Suppresses appetite and increase satiety	Decreased functionality
Insulin	Pancreas	Regulates energy balance Signals satiety to brain	Insulin resistance in obesity Reduced insulin levels after dieting
Leptin	Adipocytes	Regulates energy balance Suppresses appetite	Levels decrease during weight reduction
Peptide YY	Distal small intestine	Suppresses appetite	Levels decreased in obesity
Sumithran P, et al. Clin Sci (Lond). 2013;12	94:231-241.		

53

54

12/01/20

Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

56

57

Condition	Amount of Weight Loss	Benefits
Blood Pressure	5%	↓ systolic by 5 mm/Hg ↓ diastolic by 5 mm/Hg
Cholesterol	5%	↑ HDL by 5 mg/dL ↓ Triglycerides by 40 mg/dL
Pre-Diabetes	5%	↓ T2DM by 50%
Diabetes	5%	↓ A1c by 0.5%
Sleep Apnea	10%	\downarrow apnea episodes by up to 50%
Arthritis	5-10%	\checkmark mechanical force off knee by up to 7x the weight loss
NASH	10%	↓ liver inflammation and necrosis but not fibrosis

Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

59

Module 1 - Obesity is a Complex Disease: Scope and Pathophysiology Clinical Webinar PPT

65

Clinical Webinar PPT

Thank you! Remember to complete the posttest and evaluation in Module 1 on AAPA's Learning Central to obtain credit and your certificate for this webinar.

66

Answers to polling questions: 15(E); 21(D); 39(A)