
CURRENT AND FUTURE STATE OF CARDIOVASCULAR DISEASE AND TYPE 2 DIABETES

Patient-Centered Management of Diabetes and Prevention of Cardiovascular Disease

Cover from: Clinical Diabetes. December 2017, 35(5) Practical Information for Primary Care

Faculty

Chair: Jonathan Purnell, MD Professor of Medicine, Division of Cardiovascular Medicine Oregon Health and Science University

Speakers: Angela Thompson DNP, FNP-C, BC-ADM, CDCES, FAANP Nurse Practitioner, Hendricks Endocrinology Medical Director, Diabetes Youth Foundation of Indiana Jeff Unger, MD, FAAFP, FACE Assistant Clinical Professor of Family Medicine, UC Riverside School of Medicine Director, Unger Concierge Primary Care Medical Group Director, Metabolic Studies; Catalina Research Institute

Jonathan Weber, MA, PA-C, FAAPA Assistant Professor & Associate Director of Didactic Education, Section of General Internal Medicine, Yale School of Medicine Physician Associate Program

Yale Medicine, Endocrine & Metabolism Division

Disclosures

Jonathan Purnell, MD

• Novo Nordisk: Consultant, Advisory Board

Angela Thompson, DNP

• Novo Nordisk: Consultant, Focus Group

Jeff Unger, MD, FAAFP, FACE

• Novo Nordisk: Consultant, Speaker, Advisory Board, Primary Investigator; Abbott Diabetes: Consultant, Advisory Board, Speaker; Allergan: Speaker

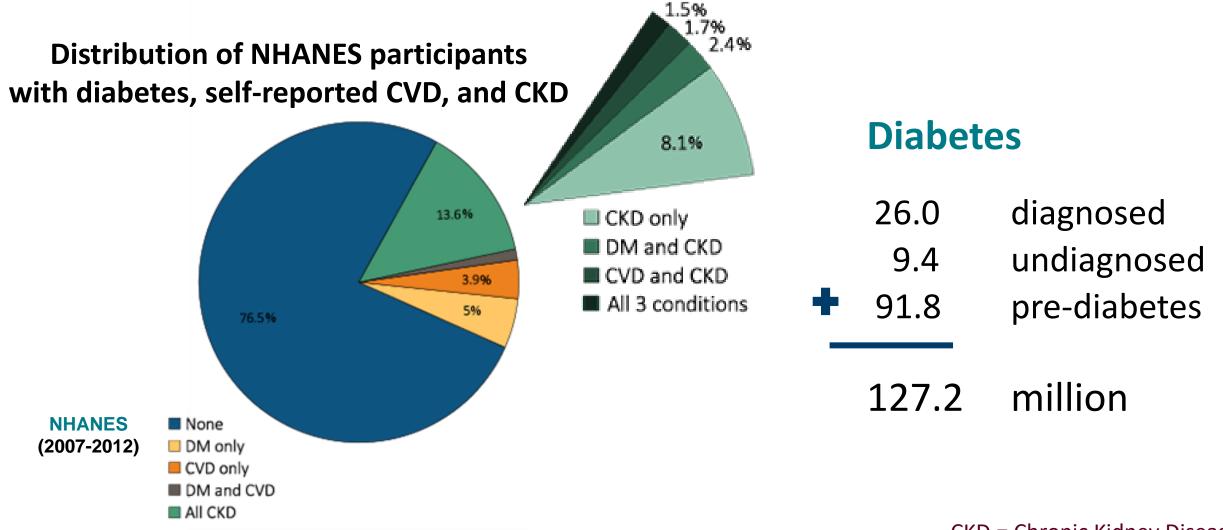
Jonathan Weber, MA, PA-C

• Nothing to disclose

Accreditation Statements

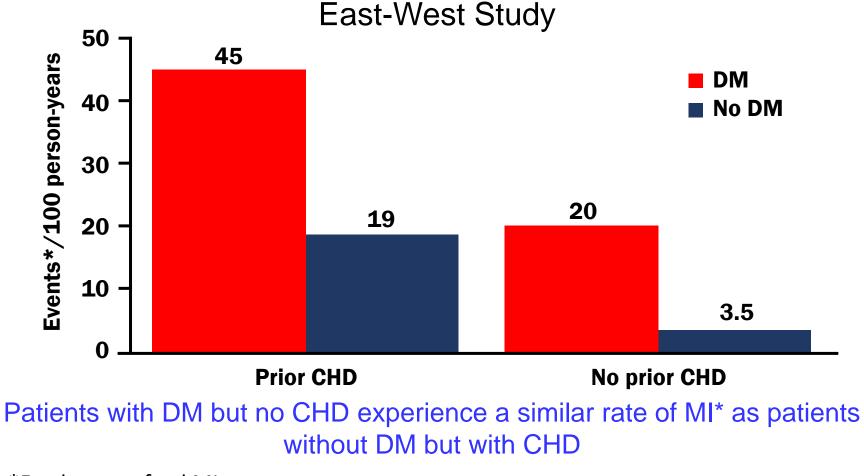
- The AAFP has reviewed Current and Future State of Cardiovascular Disease and Type 2 Diabetes, and deemed it acceptable for AAFP credit. Term of approval is from 11/17/2020 to 11/16/2021. Credit approval includes the following session(s):
 - 1.00 Enduring Materials, Self-Study AAFP Prescribed Credit(s) Case 2 Patient-Centered Management of Diabetes and Prevention of Cardiovascular Disease.
- This activity is approved for 1.0 contact hour(s) of continuing education by the American Association of Nurse Practitioners. Activity ID# 20104590. This activity was planned in accordance with AANP Accreditation Standards and Policies.
- This activity has been reviewed by the AAPA Review Panel and is compliant with AAPA CME Criteria. This activity is designated for 1.0 AAPA Category 1 CME credits. PAs should only claim credit commensurate with the extent of their participation.
- The Endocrine Society designates this live activity for a maximum of 1.0 AMA PRA Category 1 Credit[™] and 1.0 ABIM Medical Knowledge MOC point. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

We thank Boehringer Ingelheim, Lilly USA, LLC and Novo Nordisk for generously supporting this program.


Learning Objectives

At the end of the learning session, the participant will be able to:

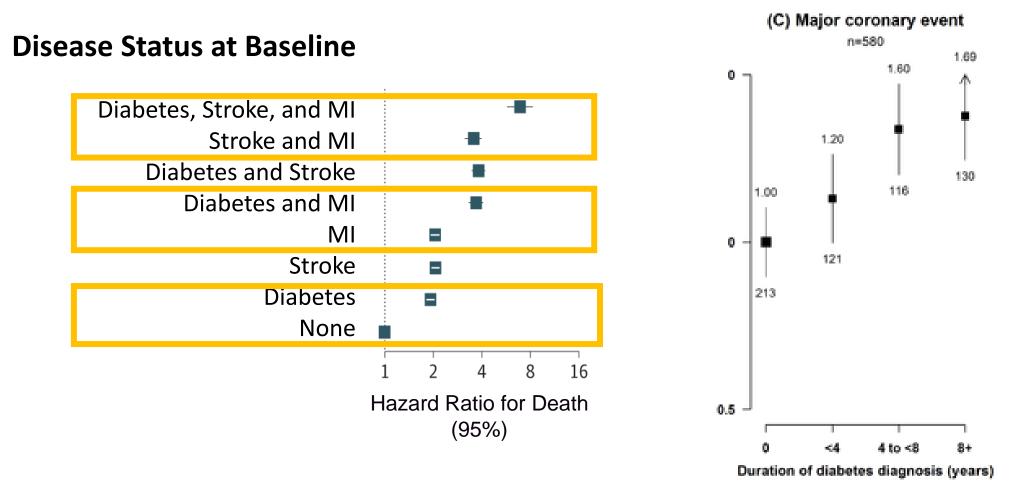
- Discuss prevalence and associations of diabetes, CVD, and DKD
- Recognize diabetes as a CVD equivalent and accelerator
- Review behavioral interventions for mitigating CVD and DKD risk in T2DM
- Distinguish major drug classes and outcomes from CVOTs related to impacts on glycemic control, CVD and DKD risk reduction in T2DM
- Develop clinical strategies using CVOT drug classes to optimize glycemic goals and reduce CVD and DKD risk for patients with T2DM
- Implement a team approach to diabetes care encouraging patient-centered diabetes selfmanagement skills, education and support (DSMES)



Diabetes, CKD & CVD in United States

NIDDK Kidney Disease Statistics for the US. Available at https://www.niddk.nih.gov/healthinformation/health-statistics/kidney-disease Virani SS, et al. *Circulation*. 2020;141:e139–e596. CKD = Chronic Kidney Disease CVD = Cardiovascular Disease DM = Diabetes Mellitus

Diabetes Mellitus: Myocardial Infarction Risk Equivalent

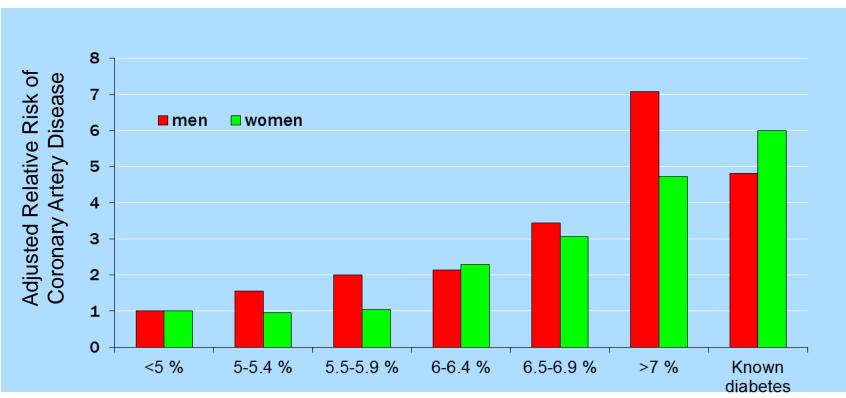


*Fatal or non-fatal MI

CHD = Coronary Heart Disease DM = Diabetes Mellitus MI = Myocardial Infarction

Haffner SM et al. NEJM 1998;339:229–234

Diabetes: An Atherosclerosis Risk Enhancer

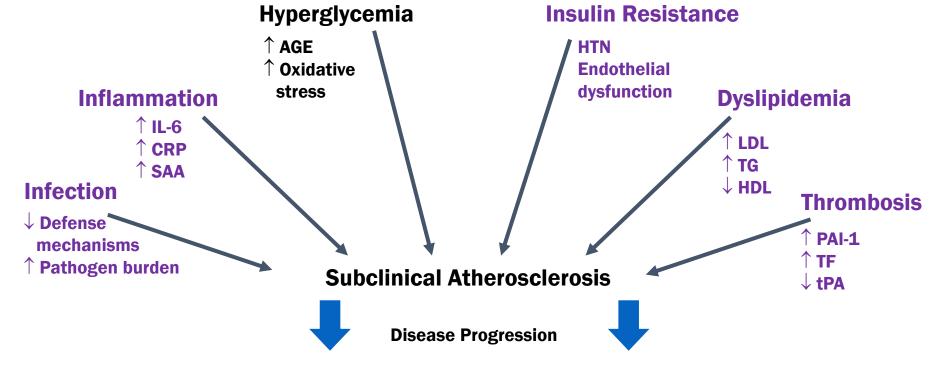


Adapted from Emerging Risk Factors Collaboration, Di Angelantonio E, et al. Association of Cardiometabolic Multimorbidity With Mortality. JAMA. 2015;314(1):52-60.

Bragg F, Li L, Yang L, Guo Y, Chen Y, et al. (2016) *Risks and Population Burden of Cardiovascular Diseases Associated with Diabetes in China:* A Prospective Study of 0.5 Million Adults. *PLoS Med.* 2016 13(7):e1002026. Open access article with unrestricted use.

Diabetes Mellitus: Impact of Glycemic Control on CV Risk

Prospective observational study of 10, 232 patients with DM aged 45-79 years

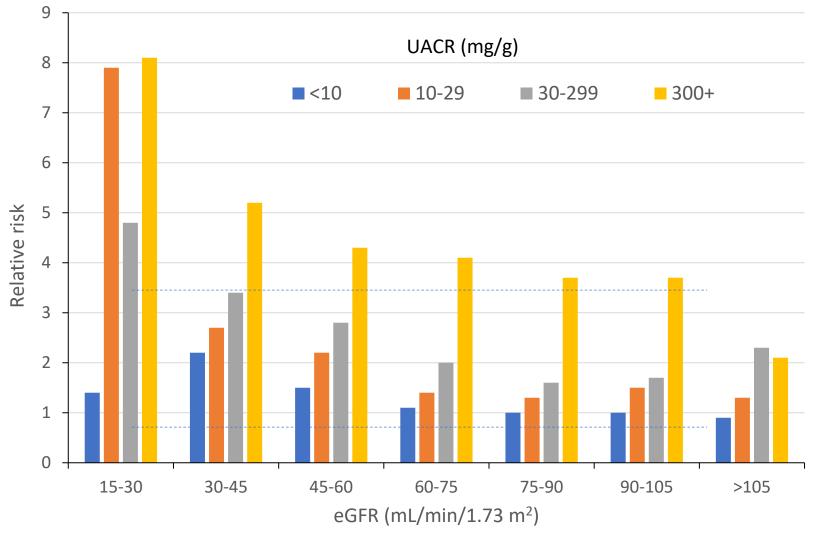


The risk of CV disease increases with increasing HbA_{1C}

Khaw KT et al. Ann Intern Med 2004;141:413-420

CV = Cardiovascular

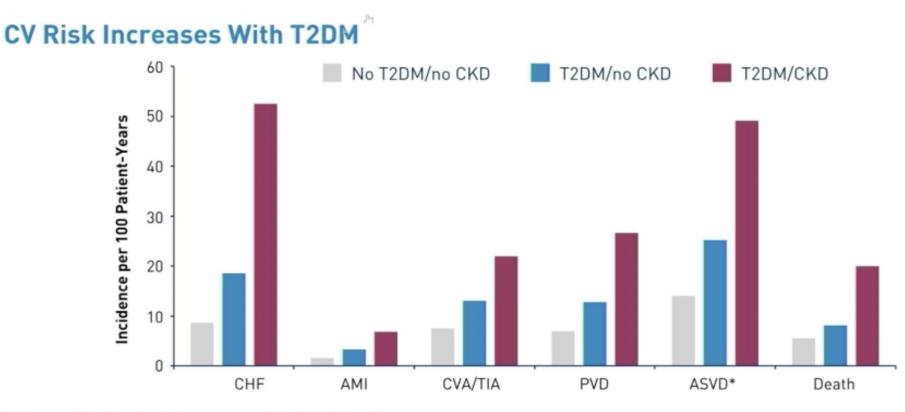
Mechanisms of Coronary Heart Disease in Diabetes: Much More Than Just Glucose



Atherosclerotic Clinical Events

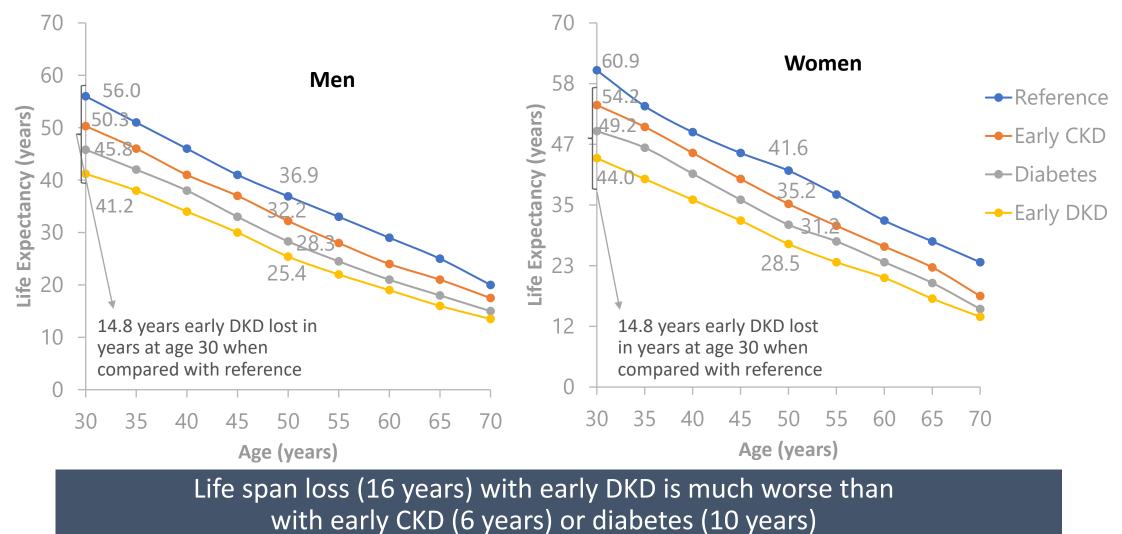
AGE=Advanced glycation end products, CRP=C-reactive protein, HDL=High-density lipoprotein, HTN=Hypertension, IL-6=Interleukin-6, LDL=Low-density lipoprotein, PAI-1=Plasminogen activator inhibitor-1, SAA=Serum amyloid A protein, TF=Tissue factor, TG=Triglycerides, tPA=Tissue plasminogen activator

Biondi-Zoccai GGL et al. JACC 2003;41:1071-1077

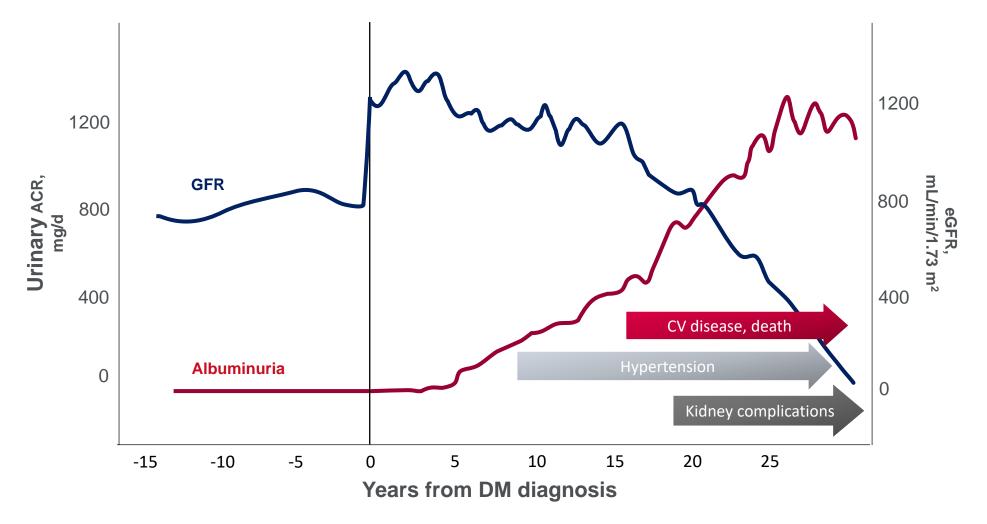

Cardiovascular Mortality Based on eGFR and UACR

KDIGO. Kidney Int Suppl (2011). 2013;3(1):19-62.

UACR = Urine Albumin-to-Creatinine Ratio


T2DM & Associated Risks of CVD, CKD & Death

*ASVD was defined as the first occurrence of AMI, CVA/TIA, or PVD.


Adapted from Foley et al. American Journal of Nephrology. 2005.

DKD and Life Expectancy

Wen CP, et al. Kidney Int. 2017;92(2):388-396.

Albuminuria Can Occur Long Before eGFR Declines in DKD

Alicic RZ, et al. *Clin J Am Soc Nephrol*. 2017;12:2032-2045; Afkarian M. *Pediatr Nephrol*. 2015;30:65-74.

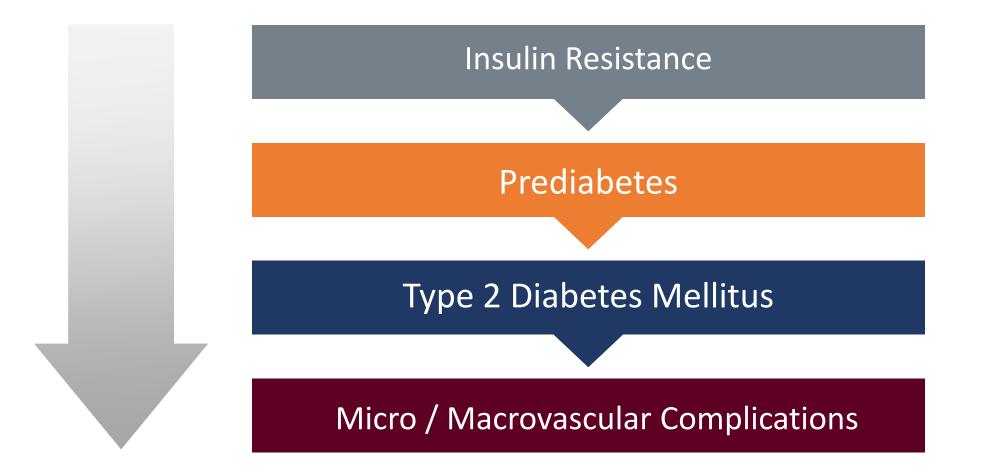
ALBUMIN:CREATININE RATIO >300MG/G

DIABETIC KIDNEY DISEASE

ALBUMIN:CREATININE RATIO 30-299MG/G RETINOPATHY OR T1DM >10 YRS

National Kidney Foundation: www.kidney.org

CKD Progression Risk as function of GFR & ACR


Green = Low Risk			Persistent Albuminuria Categories			
Yellow = Moderately Increased Risk			A1	A2	A3	
Orange = High Risk			Normal to mildly	Moderately	Severely	
Red = Very High Risk			increased	increased	increased	
(Numbers = numbers of visits per year)			<30 mg/g <3mg/mmol	30-299 mg/g 3-29 mg/mmol	>300 mg/g >30 mg/mmol	
	G1	Normal or High	<u>></u> 90	1 if CKD	Treat 1	Refer 2
	G2	Mildly decreased	60-89	1 if CKD	Treat 1	Refer 2
GFR Categories (mL/min/1.73m ²)	G3a	Mildly or moderately decreased	45-59	Treat 1	Treat 2	Refer 3
Description and range	G3b	Moderately to severely decrease	30-44	Treat 2	Refer 3	Refer 3
	G4	Severely decreased	15-29	Refer 3	Refer 3	Refer 4+
	G5	Kidney failure	<15	Refer 4+	Refer 4+	Refer 4+

Adapted from KDIGO CKD Work Group. *Kidney Int Suppl.* 2013;3:1-150.

GFR = Glomerular Filtration Rate

ACR = Albumin Creatinine Ration

Making the Connection

Patient Case: Meet Les

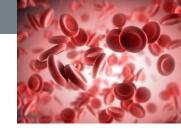
- 67-year-old African American male
- Type 2 diabetes for 12 years
- Hyperlipidemia, hypertension, and CKD stage G2A2 (eGFR= 66 mL/min/1.73 m²)
- Does not always refill medications on time- forgetssometimes out of meds for 3-5 days before gets filled
- Commercial coverage with high deductible
- Testing his glucose levels a few times a week
- Medications
 - Losartan 50 mg QD
 - Atorvastatin 20 mg QD
 - Metformin 500 mg BID
 - Sitagliptin 100 mg QD
 - Aspirin 81 mg QD

Image provided by © Obesity Action Coalition.

Les' Physical and Labs


Physical

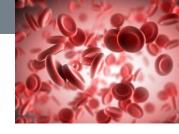
- Blood pressure: 150/94 mm Hg
- BMI: 32 kg/m² Waist circ: 43 in
- Pertinent physical findings
 - -Loss of leg hair
 - LE skin discoloration


<u>Labs</u>

A1C	8.4% (elevated)
eGFR/ACR	66 mL/min/? m ² (low) ACR= 120 mg/G (high)
LDL	124 mg/dL (elevated)
HDL	33 mg/dL (low)
TG	324 mg/dL (elevated)

BMI = body mass index; HDL = high-density lipoprotein; LDL =low-density lipoprotein; TG = triglycerides.

Les' Lifestyle



- Exercise Golf and walks his dog once a day
- Diet Dine out at restaurants 3-4 times a week and with work travel, eats 2 meals a day
- Employment Trucking company executive; frequent domestic travel
- Alcohol Use on the weekends consumes 5-6 beers when golfing
- Tobacco Use quit 15 years ago
- Sleep Schedule 6-7 hours a night
- Not filling medications regularly

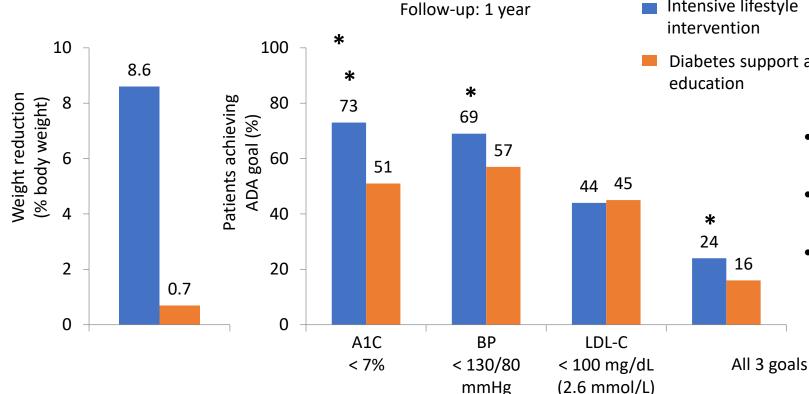
Patient Case: Faculty Discussion

What are your primary treatment considerations for Les?

How would you address lifestyle interventions?

Goals Of Diabetes Management

- Define & achieve glycemic targets to reduce both microvascular and macrovascular CVD events
 - A1C targets
 - Ambulatory Glucose Profile targets
 - SMBG Fasting & postprandial glycemia goals
 - CGM "Time in Range" & glucose variability goals
- Consider T2DM therapies in view of pathogenesis (ominous octet)
 - Lifestyle Interventions
 - Pharmacologic interventions aimed at:
 - Minimizing hypoglycemia
 - Controlling glycemic variability to maximize "Time in Range"
- Consider therapies for prevention or management of comorbidities
 - CVD, HTN, CHF aspirin, anti-platelet, antihypertensive agents
 - DKD RAAS agents
 - Dyslipidemia statins, ezetimibe, fibrates, fenofibrates, Icosapent ethyl, PCSK9 inhibitors


SMBG = Self-Monitoring of Blood Glucose

CGM = Continuous Glucose Monitoring

RAAS = Renin-Angiotensin-Aldosterone System

Standards of Medical Care in Diabetes - 2020. *Diabetes Care 2020;43*(Suppl. 1):S37-S47

Lifestyle Interventions for T2DM: Short-Term Benefits

- Intensive lifestyle
- Diabetes support and
 - Annual hospitalizations \downarrow 11% (*P* = 0.004) ٠
 - Annual hospital days \downarrow 15% (*P* = 0.01) •
 - Number of medications \downarrow 6% (*P* < 0.001) •

*p < 0.001 vs diabetes support and education.

Look AHEAD Research Group. Diabetes Care 2007;30:1374-83. Gregg EW, et al. JAMA. 2012;308(23):2489-2496. Espland MA, et al. Diabetes Care 2014;37:2548-2556

Healthy Eating/Medical Nutrition Therapy

General	Don't skip meals and keep serving sizes consistent Portion control is the key
Carbohydrates	Emphasize nutrient dense-carbohydrates that are minimally processed and high in fiber (fresh fruits/vegetables, legumes, whole grains) Reduce overall carbohydrate intake
Fats	Emphasize consumption of mono & polyunsaturated fats (avocados, certain plant oils, fish) Limit saturated fats (butter, fatty red meats, tropical plant oils, fast foods) & trans fat Choose fat-free or low-fat dairy products
Proteins	Consume protein foods with low saturated fats (fish, egg whites, beans) Limit processed meats
Micronutrients	Routine supplementation is not necessary There is no clear evidence that vitamins, supplements or herbs/spices can improve glucose control in people with diabetes (Chromium; Vitamin D, cinnamon, aloe vera)

Grams J, et al. *Curr Obes Rep*. 2015 Jun;4(2):287-302. doi: 10.1007/s13679-015-0155-x

Activity and Exercise Recommendations

- Most adults should engage in 150 minutes of moderate- to vigorousintensity aerobic activity per week, spread over at least 3 days/week, with no more than 2 consecutive days without activity
- Shorter durations (minimum 75 min/week) of vigorous-intensity or interval training may be sufficient for younger and more physically fit individuals
- 2-3 days of resistance training/week (non-consecutive days)
- Reduce sedentary time
- Flexibility training and balance training are recommended 2–3 times/week for older adults with diabetes
- Yoga and tai chi may be included based on individual preferences to increase flexibility, muscular strength, and balance

Lifestyle & Behavioral Change

Lifestyle

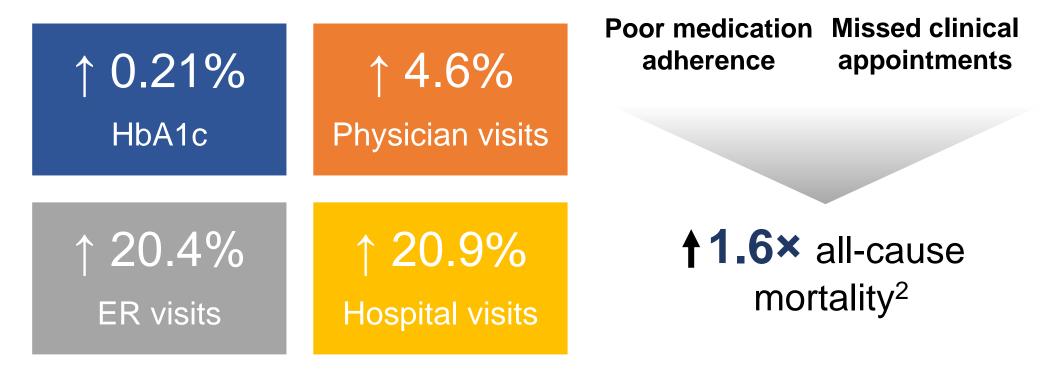
Behavioral

- Collaborate on a realistic activity plan tailored to patient
- Identify simple changes in diet/meal plan that facilitate weight loss and healthy eating habits
- Reduce alcohol consumption
- Encourage appropriate sleep hygiene
- Select technology (s) most appropriate for evaluating behavior change
 - BGM
 - CGM
 - Apps
 - Online portals

- Avoid the use of fear or intimidation tactics
- Provide encouragement
- Evaluate patient goals/health outcomes for treatment
- Identify biggest challenge/barrier to diabetes self-care
 - Common obstacles include knowledge deficit, cost, stress, family, social support, competing priorities
- Develop strategy for dealing with challenges and potential set-backs
- Consider DSME referral

Adherence in Patients With Diabetes

Disease State	Nonadherence Rate
Coronary heart disease	40%-50%
Hypertension	16%-22%
Oral diabetes medications	7%-64%
Insulin therapy	43%
HIV	13%
Asthma	25%-75%
Major depression	51%-69%

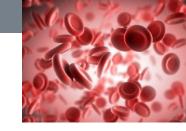


"Drugs don't work if you don't take them." *C. Everett Koop, MD*

Image from Dartmouth Geisel School of Medicine

Consequences of Poor Medication Adherence

1-point drop in self-reported medication adherence (MMAS) is associated with¹:

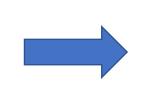


DiBonaventura M, et al. The association between nonadherence and glycated hemoglobin among type 2 diabetes patients using basal insulin analogs. *Patient Prefer Adherence*. 2014;8:873-882.

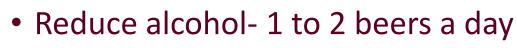
Currie CJ, et al. The impact of treatment noncompliance on mortality in people with type 2 diabetes. *Diabetes Care*. 2012;35:1279-1284.

MMAS = Morisky Medication Adherence Scale

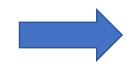
Lifestyle/Behavioral-Les

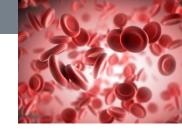


 Exercise – Golf on weekends and walking his dog once a day



• Walk the golf course rather than use cart, take dog out twice a day


- Diet Dine out at restaurants 3-4 times a week, eats 2 meals a day
- Alcohol Use on the weekends consumes 5-6 beers when golfing


 Drink big glass water before eating, select baked/steamed or grilled items, order sauces/dressing on the side

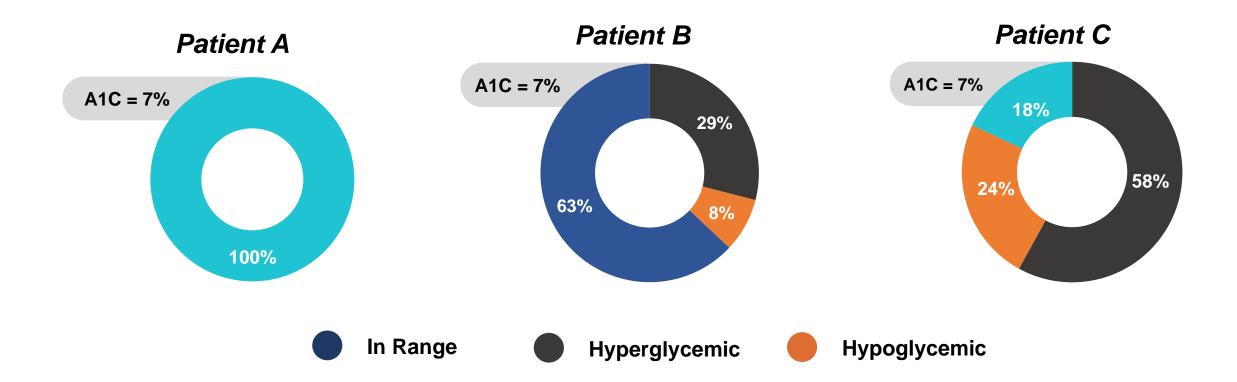
Not refilling medications regularly

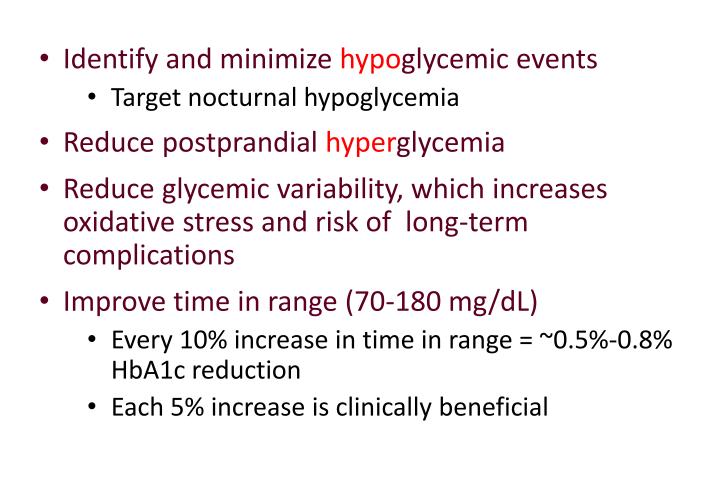
Prescribe 90 day supply of medications

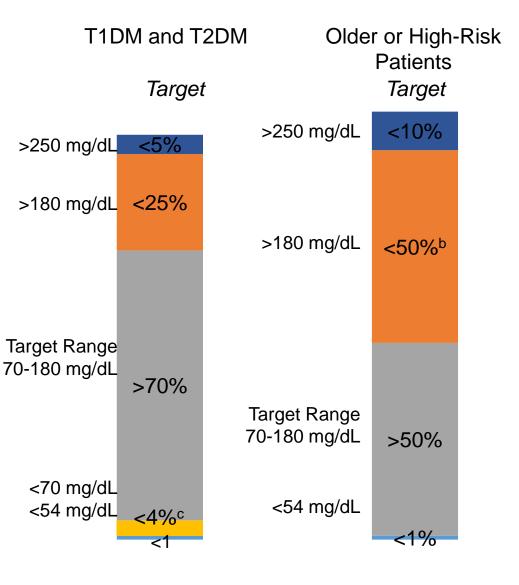
Patient Case: Faculty Discussion

What pharmacological options would you consider for Les?

What tools would you use to evaluate the response to the treatment plan?

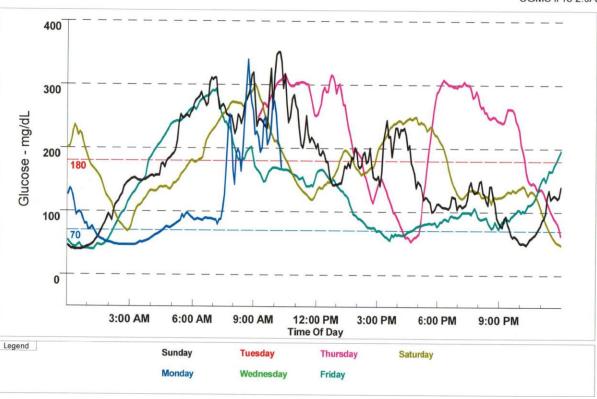





Goals of Management- Glycemic Targets

Correlation of glucose regulation and hemoglobin Alc in diabetes mellitus. N Engl J Med. 1976 Aug 19;295(8):417-20

Ambulatory Glucose Profile



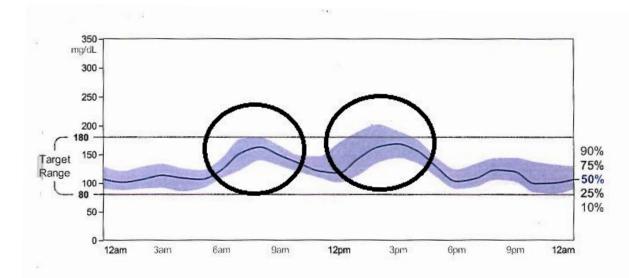
Battelino T, et al. Diabetes Care 2019 Jun; dci190028

CGM = Continuous Glucose Monitoring

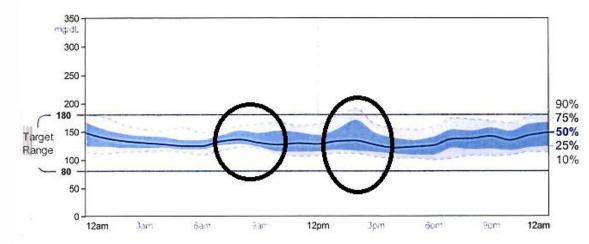
Glucose Fingersticks VS CGM

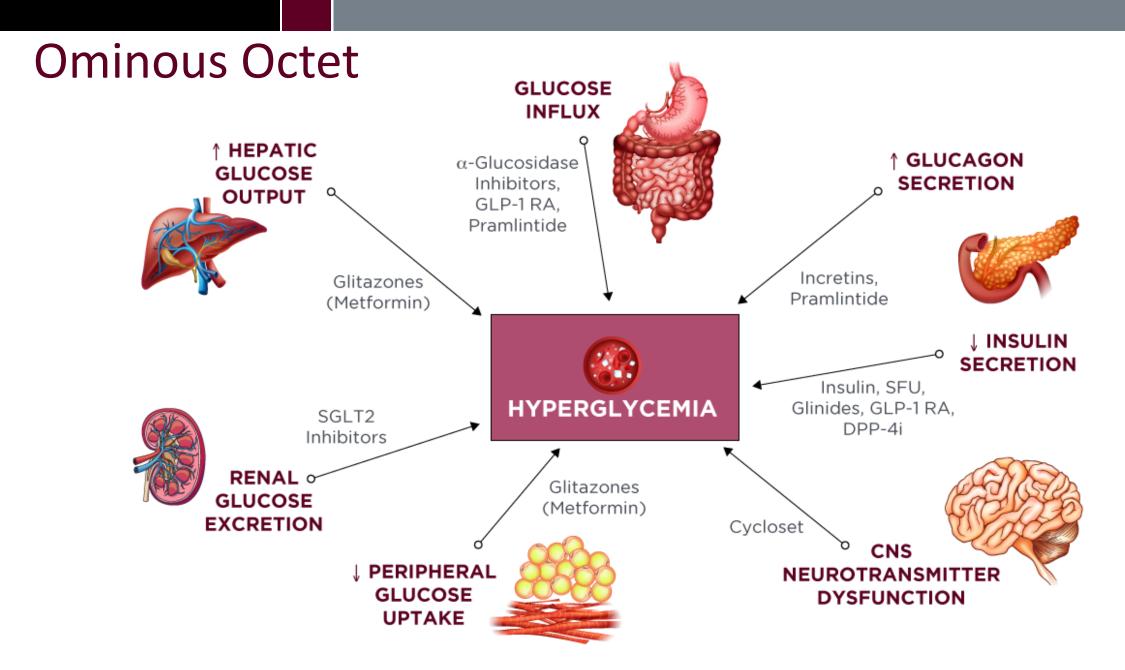
	Fasting	Prelunch	Predinner	Bedtime
Sunday	248	101	144	136
Monday	210	147	55	318
Tuesday	239	157	83	180
Wednesday	159	130	126	116
Thursday	183	128	103	101
Friday	289	173		

CGMS iPro 2.0A


Professional CGM

- Inserted and download at an outpatient office visit
- Conducted for up to 14 days with patient blinded to the readings
- Food, exercise, and medication logs completed by the patient
- Sensor data downloaded in the office (7 and/or 14 day)
- Billable service

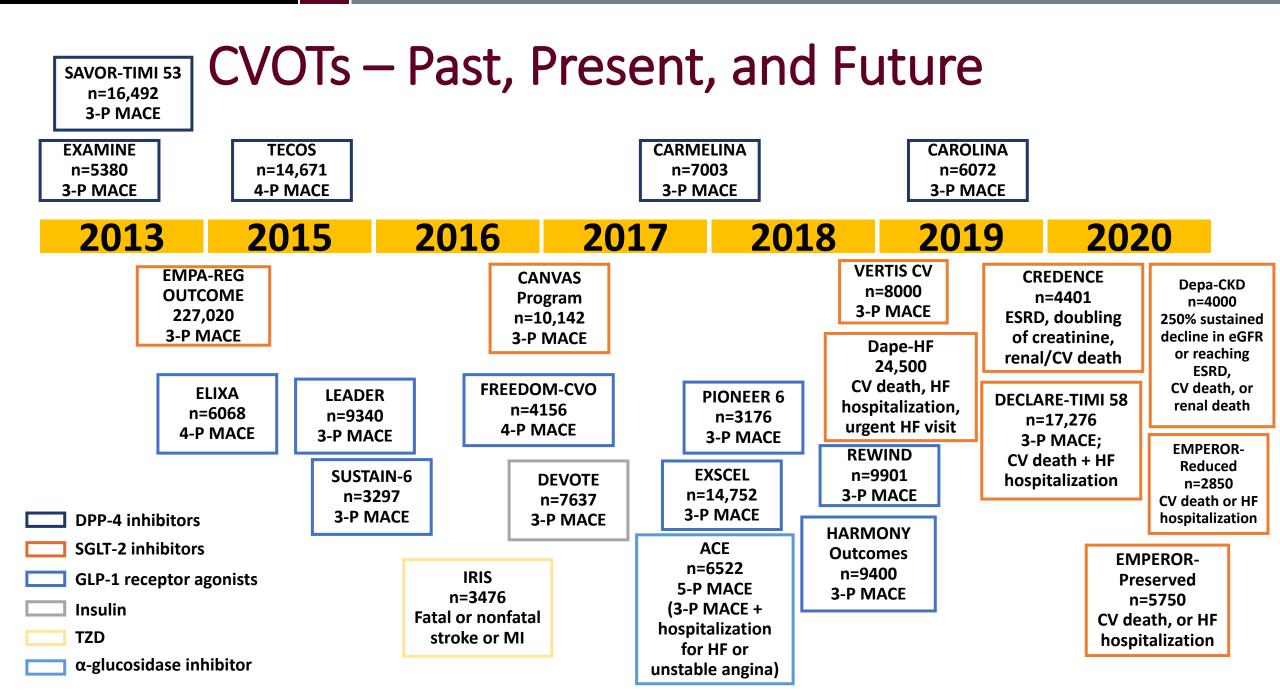

Codes	Billed by	Fee Schedule* (Private payer)
CPT 95250 (Do not bill more than 1x/mo)	Any qualified staff under the direct supervision of a MD, PA or NP	\$305
CPT 95251 (Do not bill more than 1x/mo)	MD, PA, NP	\$90


CGM Application

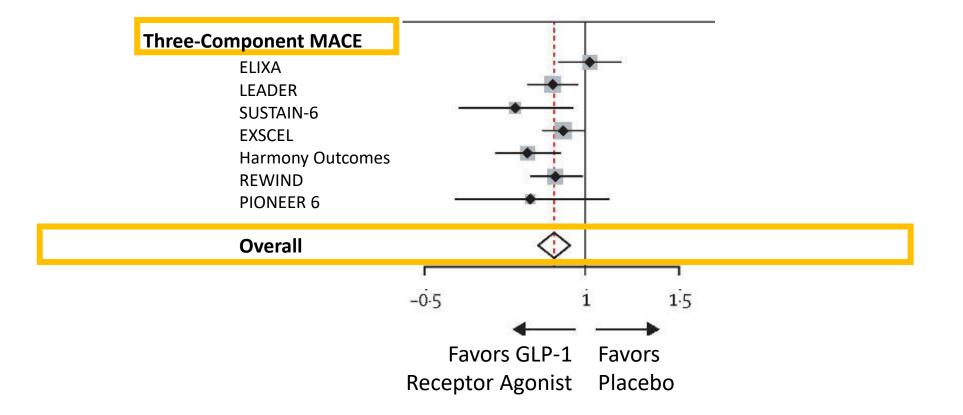
Week 1

Week 2

Adapted from Cavaiola TS, Pettus JH. Management Of Type 2 Diabetes: Selecting Amongst Available Pharmacological Agents. https://www.ncbi.nlm.nih.gov/books/NBK425702/ CNS = Central Nervous System SFU = Sulfonylureas

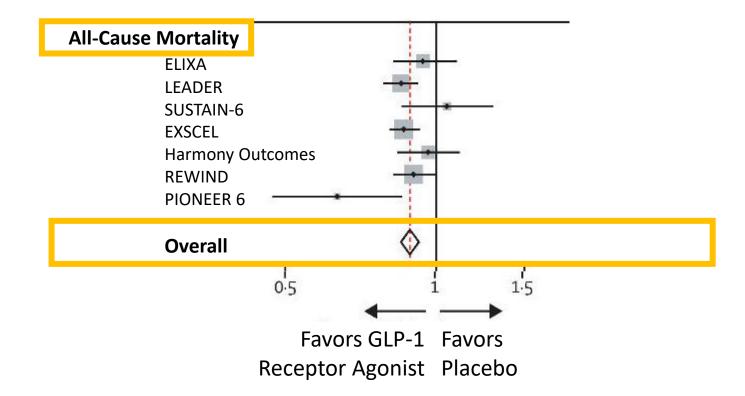

Cardiovascular Outcomes Trials (CVOTs)

- Since FDA issued guidance
 >25 CVOTs have launched
- Primary endpoint: major adverse cardiac events (MACE)
 - 3-point MACE = cardiovascular death, nonfatal myocardial infarction, nonfatal stroke
 - 4-point MACE = 3-point MACE + additional CV endpoint (acute coronary syndrome or hospitalization for heart failure or unstable angina)

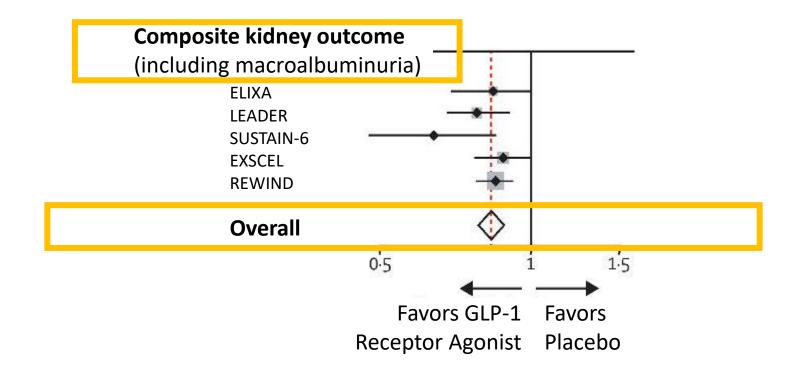

Major Drug Classes Studied

DPP-4 Inhibitors	GLP-1 Receptor Agonists	SGLT2 Inhibitors
 Alogliptin Linagliptin Saxagliptin Sitagliptin 	 Albiglutide Dulaglutide Exenatide Lixisenatide Liraglutide Semaglutide 	 Canagliflozin Dapagliflozin Empagliflozin Ertugliflozin

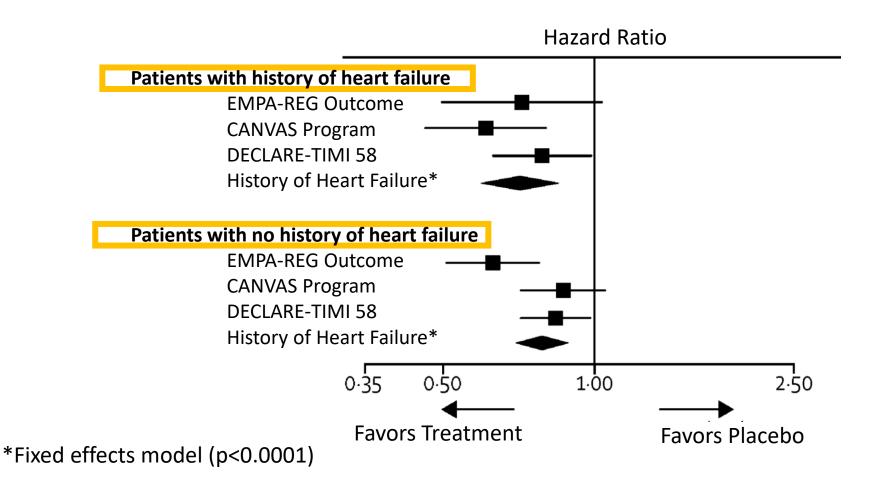
- <u>DPP-4 inhibitors:</u> Increase incretin levels, reducing release of glucagon and increasing insulin secretion
- <u>GLP-1 receptor agonists:</u> Stimulate glucose-dependent insulin release and inhibit glucagon secretion
- <u>SGLT2 inhibitors:</u> Interfere with glucose reabsorption and prevent renal reuptake of glucose from the glomerular filtrate



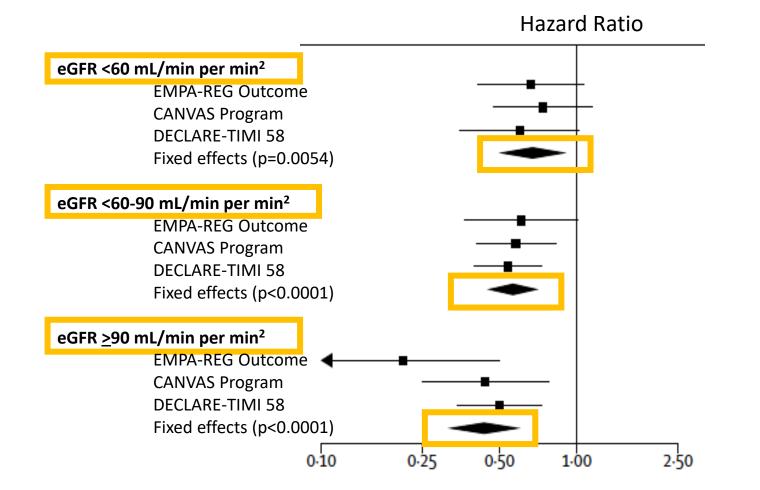
Cardiovascular Outcomes: GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A systematic review & meta-analysis of CVOT


Adapted from Kristensen SL, et al Lancet Diabetes Endocrinol. 2019; 7: 776–85

Renal, Heart Failure, and Mortality Outcomes with GLP-1 Receptor Agonists in Patients With Type 2 Diabetes: A systematic review & meta-analysis of CVOT

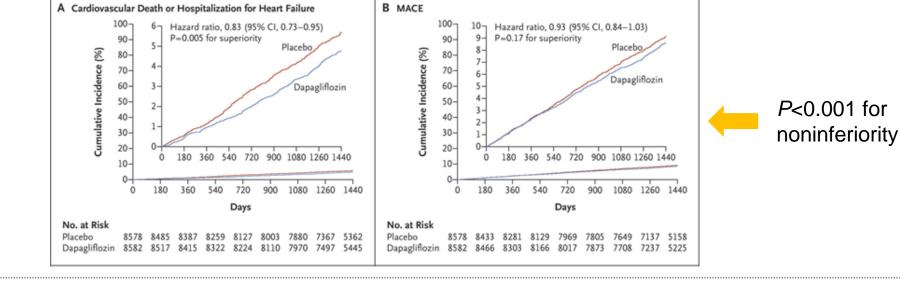

Adapted from Kristensen SL, et al Lancet Diabetes Endocrinol. 2019; 7: 776–85

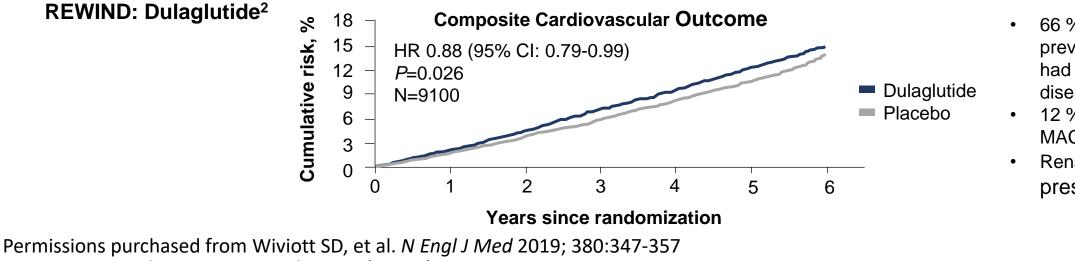
Renal, Heart Failure, and Mortality Outcomes: GLP-1 Receptor Agonists in Patients With Type 2 Diabetes: A systematic review & meta-analysis of CVOT


Adapted from Kristensen SL, et al Lancet Diabetes Endocrinol. 2019; 7: 776-85

Meta-analysis of SGLT2i Trials Stratified by eGFR Levels: <u>Class</u> <u>Benefit</u> on Hospitalization for Heart Failure and CV Death

Adapted from Zelniker TA et al *Lancet*. 2019; 393: 31–39


Meta-analysis of SGLT2i Trials Stratified by eGFR Levels: <u>Class</u> <u>Benefit</u> on Composite of Worsening of Renal Function, End-stage Renal Disease, or Renal Death



Adapted from Zelniker TA et al *Lancet*. 2019; 393: 31–39

Recent News: Dapagliflozin and Dulaglutide

DECLARE TIMI-58 Dapagliflozin¹

Gerstein HC, et al. Lancet. 2019 Jul 13;394(10193):121-130

- 66 % were primary prevention and 34 % had established disease.
- 12 % reduction in MACE vs PBO
- Renal function
 preservation

Renal Outcomes in CVOTs

SGLT2 Inhibitors

- Benefits demonstrated on renal outcomes as a class effect
- Not recommended below eGFR < 45 ml/min per 1.73 m²

• GLP-1 Receptor Agonists

- Benefits demonstrated on renal outcomes as a class effect
- Okay to use in all stages of renal disease

• DPP-4 Inhibitors

- Inconsistent results on renal outcomes
- Most produced no significant differences in prespecified endpoints, but some reduced UACR
 - SGLT2 = Sodium/Glucose Co-Transporter 2 GLP-1 = Glucagon-Like Peptide-1 DPP-4 = Dipeptidyl Peptidase 4

SGLT2 Inhibitors and GLP-1 Receptor Agonists

Lifestyle Management + Metformin Initiate metformin if no contraindications

If A1C not at target, consider dual therapy

With indicators of high-risk or established ASCVD, CKD, or HF

> Consider independently of baseline A1C or individualized A1C target

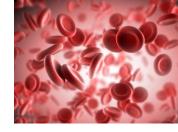
ASCVD Predominates

PREFERABLY

- GLP-1 receptor agonist with proven CVD benefit* OR
- SGLT2 inhibitor with proven CVD benefit (if eGFR adequate)*

HF or CKD Predominate

PREFERABLY


- SGLT2 inhibitor with evidence of reducing HF and/or CKD in CVOTs if eGFR adequate[†] OR
- If SGLT2 inhibitor not tolerated or contraindicated or if eGFR less than adequate, add GLP-1 receptor agonist with proven CVD benefit*

*Proven CVD benefit = label indication of reducing CVD events (canagliflozin, empagliflozin, liraglutide; dapagliflozin for HHF)

†Evidence

from CVOTs = empagliflozin, canagliflozin, and dapagliflozin have shown ↓ HF and CKD progression

Adapted from ADA. Diabetes Care. 2020;43:S98-S110.

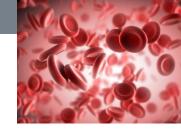
Treatment Intensification-Les

Pharmacologic

- Increase Metformin to 1000 mg BID
- Stop Sitagliptin
- Consider adding GLP1-RA :
 - Semaglutide, Dulaglutide or Liraglutide
- Consider adding an SGLT-2i:
 - Erutgliflozin, dapagliflozin, empaglifloxin, or canagliflozin

- Review safety considerations/potential side effects
- Provide instruction on administration, titration, storage, and site selection for GLP1-RA
- Provide discount/savings cards to help offset cost (high deductible)

Safety Considerations


GLP-1 RA

SGLT-2i

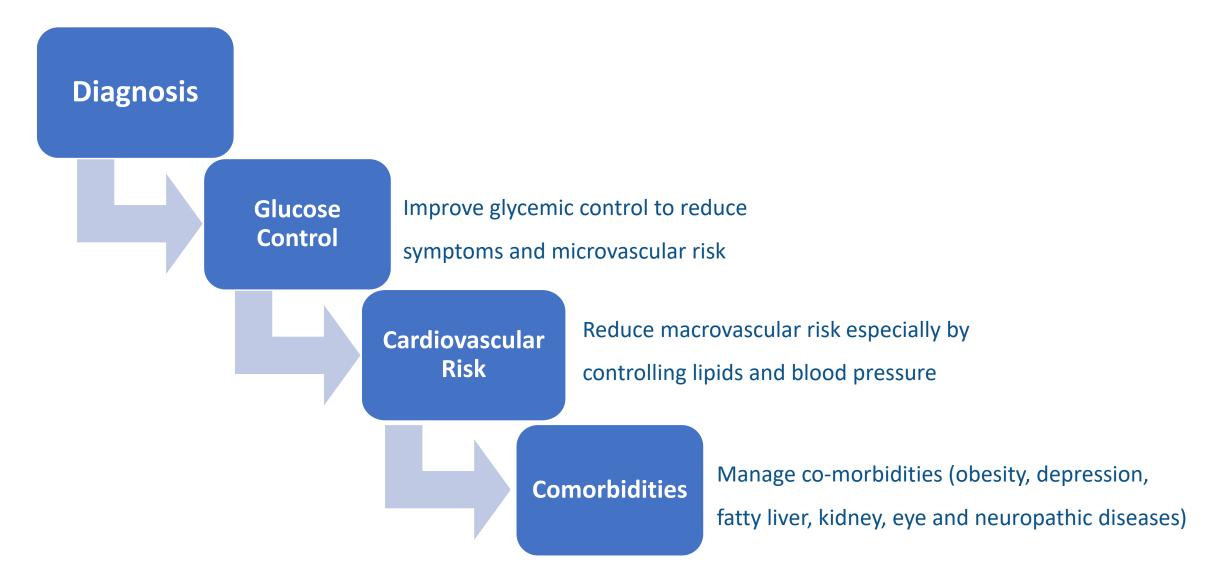
- Black Box Warning thyroid C-cell tumors (liraglutide, dulaglutide, exenatide extended release)
- Gastrointestinal side effects common (nausea, vomiting, diarrhea)
- Injection-site reactions
- Acute pancreatitis risk (?)

- Canagliflozin Black Box Warning (BBW) – risk of amputation
- Canagliflozin risk of bone fractures
- Diabetic ketoacidosis (T1D)
- Genitourinary infections
- Risk of volume depletion, hypotension
- Increased LDL
- Risk of Fournier's gangrene

RA = Receptor Agonist i = Inhibitor

Patient Case: Faculty Discussion

What additional therapy changes would you recommend to manage comorbidities for Les?



Proactive Management of Type 2 Diabetes

Goals of Diabetes Management: Beyond Glucose Control

	AACE ¹	ADA ²
A1C %	≤6.5	≤7.0
Fasting/pre-meal BG, mg/dL	<110	80-130
Postprandial, mg/dL	<140 ^a	<180 ^b
Blood pressure, mm Hg	< 130/80	<140/90
LDL-C, mg/dL	<100 (<70) (<55) ^c	Based on risk

^a2-hr postmeal; ^bPeak; ^cLower goals recommended for high-risk/CVD

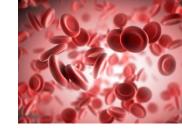
- 1. Garber AJ, et al. *Endocr Pract*. 2018;24(1):91-120;
- 2. ADA. Diabetes Care 2018; 41(Supplement 1):S86-S104.

BG = Blood Glucose AACE = American Association of Clinical Endocrinologists ADA = American Diabetes Association

ADA Recommendations to Screen and Treat CHD in Patients with Diabetes Mellitus

Primary and Secondary Prevention

- In asymptomatic patients, evaluate risk factors to stratify patients by 10-year risk, and treat risk factors accordingly
- In patients with known CV disease, an ACE inhibitor, aspirin, and statin therapy (if not contraindicated) should be used to reduce the risk of CV events
- In patients with a prior MI, beta-blockers should be continued for at least 2 years after the event.

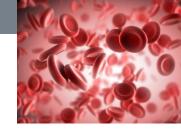

American Diabetes Association. *Diabetes Care* 2010;33:S11-61

ACE = Angiotensin Converting Enzyme

Proven ASCVD Prevention/Treatment in Diabetes 2018 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic CV Risk

- Smoking cessation
- Reduce LDL cholesterol:
 - Statins
 - PCSK9 inhibitors
- Manage hypertension
 - ACEI / ARB (also good for microalbuminuria)
- Baby aspirin
- Icosapent Ethyl (EPA 4 g/day) when TG > 150 mg/dL
- Weight loss following bariatric surgery
- Glucose control

ARB = Angiotensin II receptor blockers PCSK9 = Proprotein convertase subtilisin/kexin type 9



Les' Labs

	Results	Target
A1C	8.4% (elevated)	< 7.0%
eGFR/ACR	66 mL/min/? m ² (low) ACR= 120 mg/G (high)	
LDL	124 mg/dL <mark>(elevated)</mark>	< 100
HDL	33 mg/dL <mark>(low)</mark>	
TG	324 mg/dL <mark>(elevated)</mark>	
BP	150/94 mm Hg	<130/80

Current Medications:

- Losartan 50 mg QD
- Atorvastatin 20 mg QD
- Aspirin 81 mg QD

Treatment Intensification-Les

- Intensifying dose of ARB
- Titrate statin to high-intensity dose
- Consider adding icosapent ethyl
- Continue aspirin
- Review goals for blood pressure and other lab parameter goals
- Have patient check BP at home routinely
- Consider adding a PCSK9i if LDL goals not met at followup

Conclusions

- The landscape of diabetes management has changed from a gluco-centric approach to one targeting **customized** patient metabolic targets.
- Clinicians should **intensify** management of diabetes based on the presence of coronary artery disease, heart failure, diabetic kidney disease, obesity, hypoglycemia risk, and financial concerns.
- **GLP-1 RAs** reduce 3-point MACE, have modest weight loss, slow progression of DKD, with less improvements on CHF. No renal threshold for use.
- SGLT-2is reduce 3-point MACE, reduces CHF, slow progression of DKD, but less weight loss. Not recommended eGFR < 45 ml/min per 1.73 m².
- Don't forget about **treating to targets** for LDL and blood pressure.
- Implement team-approach DSMES proven interventions for improving patient adherence.

