# COPD Update 2021!

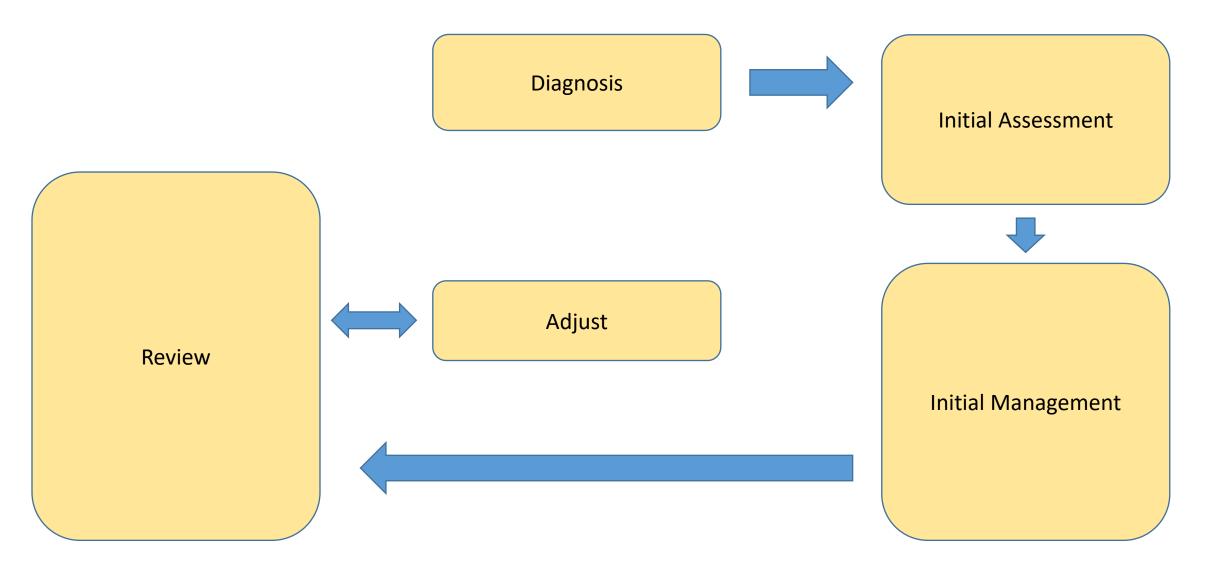






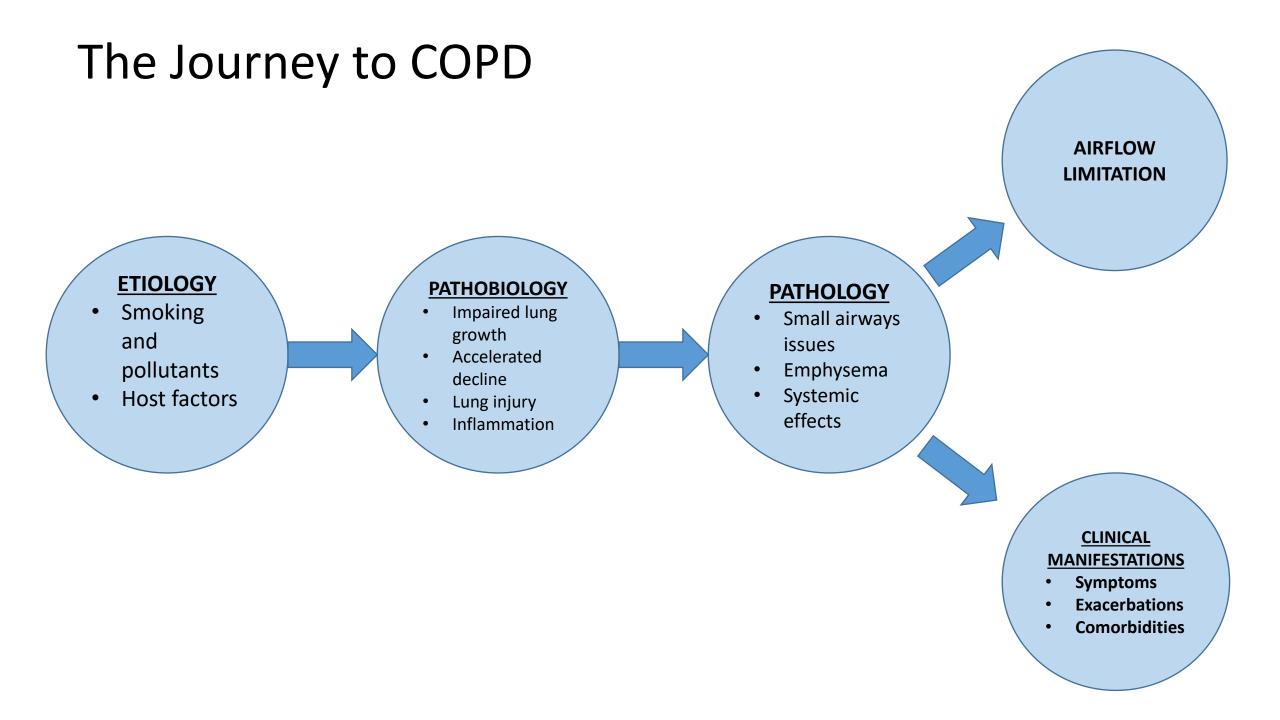
Gopal Allada MD Medical Director, OHSU PA School Associate Professor of Medicine Division of Pulmonary and Critical Care Medicine

### Disclosures


• I have no relevant disclosures for this talk

# Learning Objectives

- COPD definition and pathology
- Update and COPD demographics and burden
- Initial assessment of COPD
- Chronic management of COPD
- Define Acute Exacerbation of COPD (AECOPD)
- Management of AECOPD
- Before they go home....

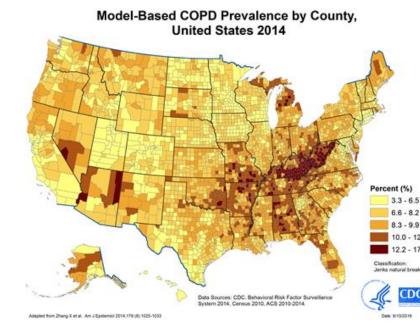



## Management of COPD



### COPD – Key Points - General

- Common, preventable, treatable
- Most common symptoms- dyspnea, cough and/or sputum
  - Patients tend to underreport
- Airflow limitation obstructive lung disease
- Main risk factor is smoking
  - Underappreciated: Biomass fuel, air pollution
  - Host factors: genetics, abnormal lung development, accelerated aging
- Most have significant concomitant chronic diseases that contribute to increased morbidity and mortality



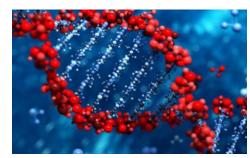

# COPD – Burden Globally

- A leading cause of morbidity and mortality worldwide
  - Major economic and social burden; increasing!
  - Risk factors
    - SMOKING!
    - Outdoor, occupational and indoor pollution
    - Age >40
- Prevalence Underdiagnosed (symptoms + spirometry)
  - BOLD program (Burden of Obstructive Lung Disease)
    - 2010- 384 million worldwide; 11.7%
    - Increased in developing countries (smoking), aging populations in high income countries
    - 2030. Higher prevalence. 4.5 million deaths annually.

# COPD-Burden US

- 15.7 million (6.4%) have COPD in the US<sup>1</sup>
  - 50% with low function but **unaware** they had COPD
- Groups more likely to have COPD
  - Women; > 65 years old
  - American Indians/Alaskan Natives; multiracial non-Hispanics
  - Unemployed, retired, or unable to work; Divorced, widowed or separated
  - Current or former smokers; People who have a history of asthma
- Cost \$32 billion direct costs/year. AECOPD is biggest culprit
- 2<sup>nd</sup> leading cause of lost Disability-Adjusted Life Years (DALY)




# COPD Risk factors

- Tobacco smoke- cigarettes; pipe, cigar, water pipe
  - Marijuana
- Indoor air pollution
  - Burning wood, other biomass fuels; poor ventilation
- Occupational exposures
- Outdoor air pollution
- Genetic factors- alpha-1 antitrypsin deficiency. Gene encoding matrix metalloproteinase 12 (MMP-12) and glutathione S-transferase









# COPD Risk factors

- Age/sex- Older; female
- Lung growth and development
  - Low birth weight and childhood respiratory infections can increase the likelihood of developing COPD
- Socioeconomic status
  - Poverty is associated with COPD develop
    - Pollution exposure? Crowding? Poor nutrition? Infections? Other?
- Asthma?

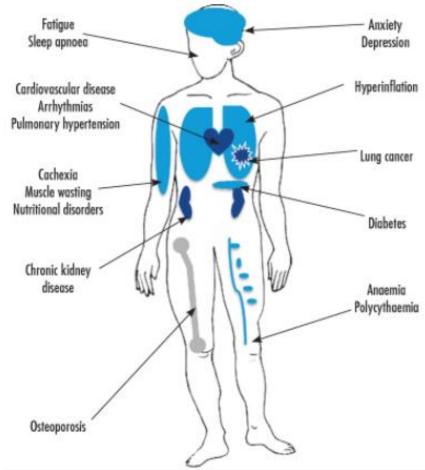






# COPD Diagnosis- Key Points

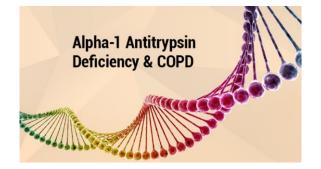
- Consider when:
  - Symptoms- dyspnea, chronic cough or sputum
  - History of recurrent lower respiratory tract (LRT) infections
  - Exposures to risk factors
- Spirometry and proof of obstruction is required to make the diagnosis
  - Peak flow has good sensitivity; poor specificity
- Goals of COPD assessment
  - Severity of airflow limitation
  - Impact on patient's health
  - Risk for negative consequences (exacerbations, admissions, death)




#### The Importance of Spirometry



# COPD Diagnosis- Key Points


- Recognize concomitant chronic diseases that are frequent in COPD patients
  - Cardiovascular disease
  - Skeletal muscle dysfunction
  - Metabolic syndrome
  - Osteoporosis
  - Depression/Anxiety
  - Lung cancer



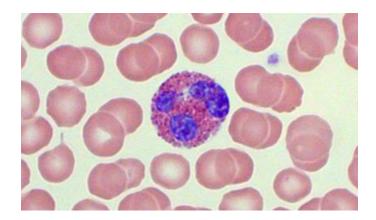

## COPD – The work up

#### • Labs

- Alpha 1- antitrypsin
  - World Health Organization recommends all patients with COPD be screened once
  - Also recommends all family members of A1AT disease patients be screened
  - ATS- All patients with COPD, emphysema and incompletely reversible asthma
- Imaging
  - CXR best use for alternative diagnoses
  - CT- not routinely recommended
    - Bronchiectasis
    - Lung cancer; lung volume reduction or transplant candidate






## COPD – The work up

- Pulmonary Function Testing
  - Spirometry
  - Lung volumes and diffusion capacity
    - Volumes show gas trapping (elevated residual volume), hyperinflation (elevated total lung capacity)
- Oximetry and ABG
  - Oximetry for all patients with signs of respiratory failure or RHF
  - If O2 sat < 92%, ABG should be assessed
- Exercise testing; assessment of physical activity
  - Strong indicators of impairment and predictor of prognosis

### COPD – The work up

- Composite scores
  - BODE Index (Body Mass Index, Obstruction, Dyspnea, Exercise)
- Biomarkers?
  - Eosinophils Increasingly used as a predictor for steroid-responsiveness
  - CRP, procalcitonin for exacerbations?





#### COPD Differential Diagnosis

|                                      | Onset                    | Symptoms                        | Labs/Imaging                                                                                                 | Other                                                                              |
|--------------------------------------|--------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| COPD                                 | Mid-Life                 | Slowly progressive              |                                                                                                              | Exposure;<br>obstruction                                                           |
| Asthma                               | Often childhood          | Variable; night>day             | Exhaled NO;<br>eosinophils                                                                                   | FH; obesity, atopy;<br>obstruction                                                 |
| CHF                                  | Mid-life                 | Variable;<br>progressive        | Dilated heart;<br>edema. Echo<br>findings                                                                    | Restriction                                                                        |
| Bronchiectasis                       | Usually older            | Copious sputum                  | Large amounts of<br>bacteria in sputum;<br>characteristic "tram<br>tracks", bronchial<br>dilation/thickening | CF and congenital<br>immune<br>deficiencies can<br>present younger;<br>obstruction |
| Tuberculosis                         | All ages                 | Sub-acute (weeks)               | Reactivation =<br>cavity<br>Primary = LAN                                                                    | Endemic areas<br>Immunosuppressed                                                  |
| <b>Obliterative</b><br>Bronchiolitis | Younger, non-<br>smokers | Sub-acute onset;<br>progressive | Expiratory CT<br>findings                                                                                    | RA; post-BMT; post-<br>Lung transplant;<br>obstruction                             |

# COPD Assessment - Severity

- Spirometry
  - Global Initiative for Obstructive Lung Disease (GOLD)
- Symptoms
  - Questionnaires
- Exacerbations
  - Frequency/severity

# $COPD - Spirometry severity. FEV_1/FVC < 0.7$

| GOLD Level | Degree      | Definition                               |
|------------|-------------|------------------------------------------|
| GOLD 1     | Mild        | $FEV_1 \ge 80\%$ predicted               |
| GOLD 2     | Moderate    | $50\% \le \text{FEV}_1 < 80\%$ predicted |
| GOLD 3     | Severe      | $30\% \le \text{FEV}_1 < 50\%$ predicted |
| GOLD 4     | Very Severe | FEV <sub>1</sub> < 30% predicted         |

#### • Uses of spirometry

- Diagnosis- Do it for diagnosis
- Severity
- Follow up annually
  - Therapeutic decisions
    - Alternative diagnoses Symptoms and spirometry don't line up
  - Identify rapid decliners

#### COPD — Dyspnea severity Modified British Medical Research Council (mMRC) Questionnaire

| mMRC Grade   | Characteristics                                                                                                                                         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| mMRC Grade 0 | I only get breathless with strenuous exercise                                                                                                           |
| mMRC Grade 1 | I get short of breath when hurrying on the level or walking up a slight hill                                                                            |
| mMRC Grade 2 | I walk slower than people of the same age on the level because of breathlessness, or I have to stop for breath when walking on my own pace on the level |
| mMRC Grade 3 | I stop for breath after walking about 100 meters or after a few minutes on the level                                                                    |
| mMRC Grade 4 | I am too breathless to leave the house or I am breathless when dressing or undressing                                                                   |

#### COPD – Symptom severity COPD Assessment Test (CAT)

| Minimum symptoms                                                   | Scale       | Maximum symptoms                                                             |  |
|--------------------------------------------------------------------|-------------|------------------------------------------------------------------------------|--|
| I never cough                                                      | 0 1 2 3 4 5 | I cough all the time                                                         |  |
| I have no phlegm (mucus) in my chest at all                        | 0 1 2 3 4 5 | My chest in completely full of<br>phlegm (mucus)                             |  |
| My chest dies bit feel tight at all                                | 0 1 2 3 4 5 | My chest feels very tight                                                    |  |
| When I walk up a hill or one flight of stairs, I am not breathless | 0 1 2 3 4 5 | When I walk up a hill or one flight of stairs, I am very breathless          |  |
| I am not limited doing any activities at home                      | 0 1 2 3 4 5 | I am very limited doing activities<br>at home                                |  |
| I am confident leaving my home despite my lung condition           | 0 1 2 3 4 5 | I am not confident at all leaving<br>my home because of my lung<br>condition |  |
| I sleep soundly                                                    | 0 1 2 3 4 5 | I don't sleep soundly because of my lung condition                           |  |
| I have lots of energy                                              | 0 1 2 3 4 5 | I have no <mark>energy</mark> at all                                         |  |

### Combined COPD Assessment Refined ABCD Assessment Tool

| Spirometry Confirms<br>Diagnosis      |                           | sment of<br>limitation                             | Assessment of<br>exacerbations                    | Assessm<br>symptoms<br>exacerba | s/risk of |
|---------------------------------------|---------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------|-----------|
| Post-bronchodilator<br>FEV1/FVC < 0.7 | Grade<br>GOLD 1<br>GOLD 2 | FEV <sub>1</sub> % pred         ≥ 80         50-79 | ≥2 or ≥ 1<br>leading to<br>hospital<br>admission  | С                               | D         |
|                                       | GOLD 3<br>GOLD 4          | 30-49<br><30                                       | 0 or 1 not<br>leading to<br>hospital<br>admission | A                               | В         |
|                                       |                           |                                                    |                                                   | mMRC 0-1                        | mMRC ≥ 2  |

 $CAT \ge 10$ 

CAT < 10

# Prevention and Maintenance Therapy- Keys

- Smoking cessation is critical
- Effectiveness of e-cigarettes is uncertain at this time
  - Associated with increased cigarette use in adolescents
- Pharmacologic therapy can reduce COPD symptoms, frequency and severity of exacerbations and improve health status and exercise tolerance
- Inhaler technique needs to be individualized
- Flu vaccination reduces incidence of LTIs
- Pneumococcal vaccination reduces LTIs









# Prevention and Maintenance Therapy- Keys

- Pulmonary rehabilitation improves symptoms, quality of life, and physical and emotional participation in everyday activities
- In patients with *severe* (sat < 89%) resting chronic hypoxemia, longterm oxygen therapy (LTOT) improves survival
  - In patients with stable COPD and resting or exercise induced *moderate* desaturation (89-93%), oxygen treatment should **not** be prescribe routinely
- In patients with severe chronic hypercapnia and a history of hospitalization for acute respiratory failure, long-term non-invasive ventilation may decrease mortality and prevent re-hospitalization
- Palliative care is effective in controlling symptoms in advanced COPD

# Vaccination for Stable COPD – Key points

- Influenza vaccination reduces serious illness and death in COPD patients
- The 23-valent pneumococcal polysaccharide vaccine (PPSV23) has been shown to reduce community-acquired pneumonia (CAP) in COPD patients < 65 years old with  $FEV_1 < 40\%$  predicted and in those with comorbidities
- In the general population of adults ≥65 years old, the 13-valent conjugated pneumococcal vaccine (PCV13) has demonstrated significant efficacy in reducing bacteremia and serious invasive pneumococcal disease

# Pharmacologic Treatments for COPD

#### **Bronchodilators (BD)**

- Short-acting
  - Beta-agonists (SABA)
  - Muscarinic antagonists (SAMA)
- Long-acting
  - Beta-agonists (LABA)
  - Muscarinic antagonists (LAMA)
- Methylxanthines
  - E.g. theophylline

#### Anti-inflammatories

- Inhaled corticosteroids (ICS)
- Oral corticosteroid
- PDE4 Inhibitors
- Antibiotics (immune modulators?)
- Mucoregulators and antioxidant agents
- Other
  - Statins
  - LTM

### Bronchodilators in Stable COPD- Key points

- Inhaled BD are central to symptom management and regular use can prevent/reduce symptoms
- Regular and as-needed (prn) use of SABA and SAMA improve FEV<sub>1</sub> and symptoms
  - Combination of SABA and SAMA has greater improvements than either alone
- LAMA have a greater effect on exacerbation reduction compared to LABA and decrease hospitalizations

### Bronchodilators (BD) in Stable COPD- Key points

- Combination of LABA and LAMA increases FEV<sub>1</sub> and reduces symptoms and exacerbations compared to monotherapy
- Tiotropium (LAMA) improves the effectiveness of pulmonary rehabilitation in increasing exercise performance
- Theophylline exerts a small bronchodilator effect in stable COPD and is associated with modest symptomatic benefits

# Anti-inflammatory therapy in stable COPD

#### • ICS

- ICS/LABA combination is more effective than the individual components in improving lung function and health status and reducing exacerbations in patients with exacerbations and moderate to severe COPD
- Regular treatment with ICS increases risk of pneumonia especially in those with severe disease
- Triple therapy (ICS/LAMA/LABA) improves lung function, symptoms and health status and reduces exacerbations compared to ICS/LABA, LABA/LAMA, or LAMA monotherapy
- Oral steroids
  - Long-term oral steroids have many side effects and no evidence of benefit

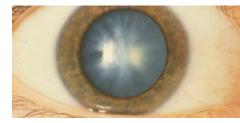


# Anti-inflammatory therapy in stable COPD

- PDE4 inhibitors
  - In patients with chronic bronchitis, severe to very severe COPD and h/o exacerbations:
    - Improves lung function and reduces moderate and severe exacerbations; including patients on fixed dose LABA/ICS
- Antibiotics
  - Long-term azithromycin and erythromycin reduces exacerbation over one year
  - Treatment with azithromycin is associated with increased incidence of bacterial resistance and hearing test impairments

## Factors to consider when starting ICS

| STRONG SUPPORT                                                                   | CONSIDER                                                        | AGAINST USE                                                                                |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <ul> <li>History of hospitalizations for<br/>COPD exacerbations</li> </ul>       | <ul> <li>1 moderate COPD exacerbation<br/>per year**</li> </ul> | <ul> <li>Repeated pneumonia events</li> <li>Blood eosinophils &lt; 100 cells/µL</li> </ul> |
| <ul> <li>≥ 2 moderate* COPD<br/>exacerbations per year**</li> </ul>              | <ul> <li>Blood eosinophils 100-300<br/>cells/µL</li> </ul>      | <ul> <li>History of mycobacterial<br/>infection</li> </ul>                                 |
| <ul> <li>Blood eosinophils &gt; 300 cells/µL</li> <li>Also has asthma</li> </ul> |                                                                 |                                                                                            |

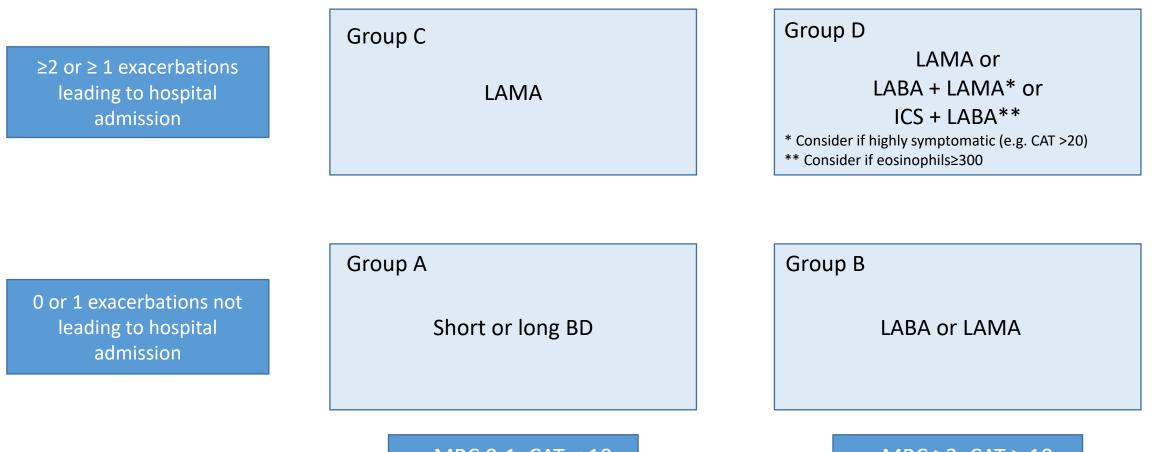

\*Severity of COPD exacerbation: Mild (increase BD), Moderate (Steroids), Severe (hospital) \*\*Despite appropriate long-acting bronchodilator maintenance therapy

# ICS- adverse effects

- Oral candidiasis
- Horse voice
- Skin bruising
- Pneumonia
  - Higher risk: > 54 years old, h/o exacerbations or pneumonia, BMI < 25, poor MRC dyspnea grade and/or severe airflow limitation. Blood eosinophils < 2%</li>
- Varied results on bone density
- Glucose control issues
- Cataracts
- Mycobacterial infections, including Tb



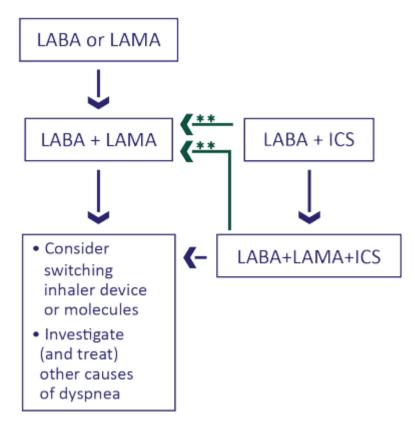







# Anti-inflammatory therapy in stable COPD

- Mucoregulators/Antioxidents
  - Regular treatment with mucolytics such as erdosteine, carocysteine, and Nacetyl cysteine (NAC) reduces the risk of exacerbations in select populations
- Simvastatin
  - Does not prevent exacerbations in COPD patients at increased risk of exacerbations and without other indications for statin treatment
  - Observationally, there are some positive COPD outcomes noted in patients who take them for CV and metabolic reasons
- Leukotriene modifiers
  - Approved for asthma, but not tested adequately in COPD


# Initial Pharmacologic Treatment

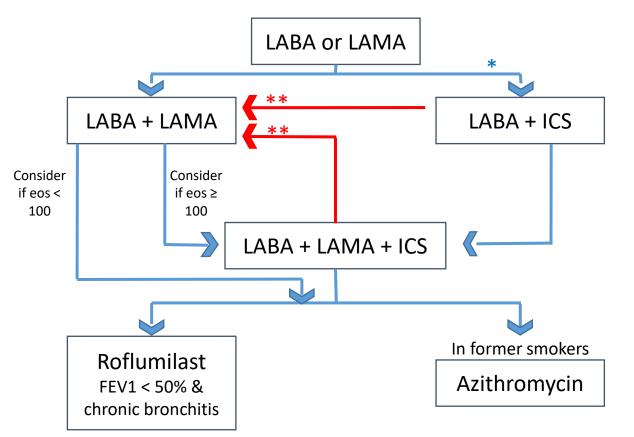


mMRC 0-1, CAT < 10

mMRC  $\geq$ 2, CAT  $\geq$  10

# Follow-up Pharmacologic Treatment




#### DYSPNEA •

- If response to initial treatment, maintain it
- If not:
  - Consider predominant trait to target
    - Dyspnea
    - Exacerbations
  - Place patient in box corresponding to current treatment

\*\*Consider de-escalation of ICS or switch if pneumonia, inappropriate original indication or lack of response to ICS

# Follow-up Pharmacologic Treatment

#### **EXACERBATIONS**



- If response to initial treatment, maintain it
- If not:
  - Consider predominant trait to target
    - Dyspnea
    - Exacerbations
  - Place patient in box corresponding to current treatment

\*Consider if eosinophils ≥ 300 or > 100 AND ≥2 moderate exacerbations/1 hospitalization \*\*Consider de-escalation of ICS or switch if pneumonia, inappropriate original indication or lack of response to ICS

### Initial Non-Pharmacologic Treatment

≥2 or ≥ 1 exacerbations leading to hospital admission

#### Group C

Smoking Cessation Pulmonary Rehabilitation Physical Activity Flu vaccine Pneumococcal vaccine

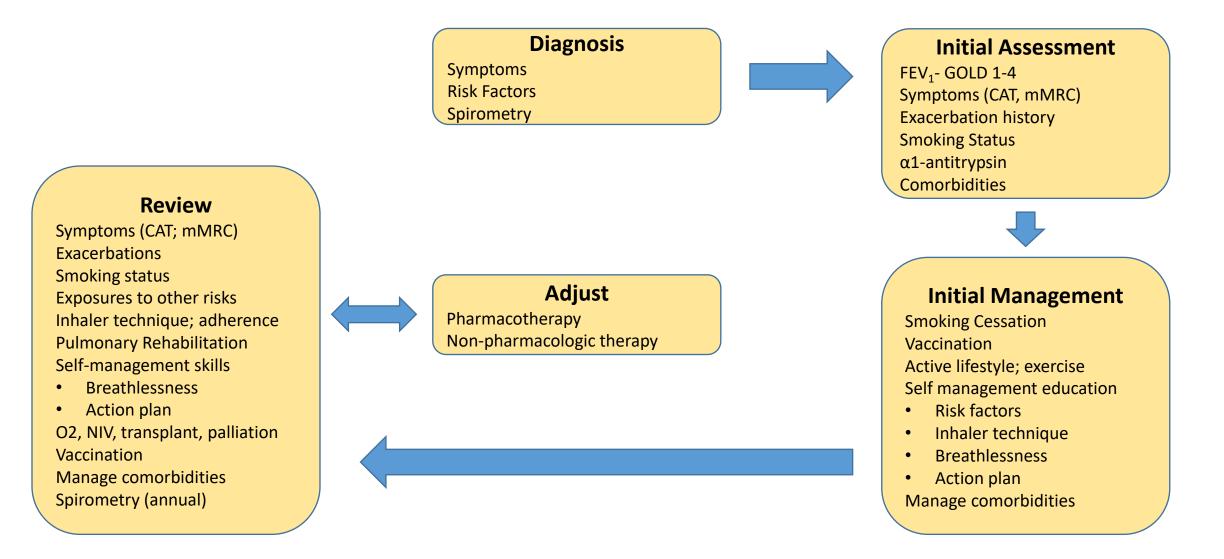
#### Group D

Smoking Cessation Pulmonary Rehabilitation Physical Activity Flu vaccine Pneumococcal vaccine

0 or 1 exacerbations not leading to hospital admission

#### Group A

Smoking Cessation Physical Activity Flu vaccine Pneumococcal vaccine


#### mMRC 0-1, CAT < 10

#### Group B

Smoking Cessation Pulmonary Rehabilitation Physical Activity Flu vaccine Pneumococcal vaccine

#### mMRC $\geq$ 2, CAT $\geq$ 10

# Management of COPD



# AECOPD – Definition and Triggers

- Acute worsening of respiratory symptoms that result in additional therapy
  - Mild (Short-acting bronchodilators- SABD alone)
  - Moderate (SABD + steroids and/or abx)
  - Severe (ED or hospitalization; acute respiratory failure)
- Triggers mainly viral infections
  - Bacterial infections
  - Ambient factors pollution; cold temperature
    - PM 2.5 fine particulate matter





# AECOPD – Symptoms and pathophysiology

- Symptoms and pathophysiology
  - Increased airways inflammation, mucus production
    - Cough
    - Sputum production
    - Early closure of small airways  $\rightarrow$  Air-trapping  $\rightarrow$  Dyspnea
  - Sputum...
    - Studies suggests that purulence indicates increased bacteria
    - Eosinophilia in sputum
      - More likely to respond to steroids?
  - Symptom duration 7-10 days...
    - 8 weeks post-discharge. 20% have not returned to baseline lung function



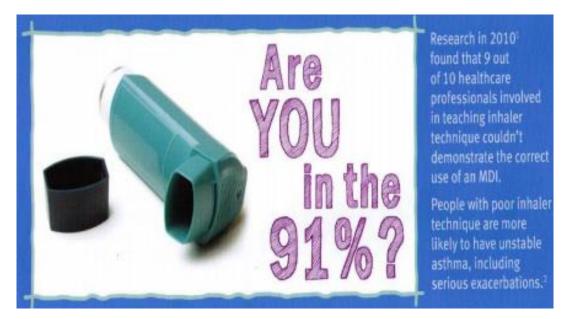
# AECOPD- Management

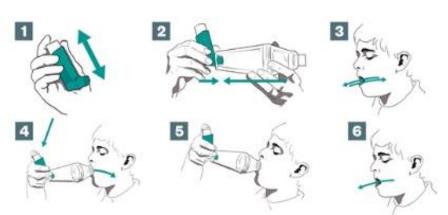
- Treatment goals
  - Minimize negative impact of the AECOPD
    - Reverse airflow limitation
    - Treat infection appropriately
    - Ensure adequate oxygenation
    - Avert ICU stays; intubation
    - Avoid complications of immobility (PE, deconditioning)
    - Improve nutrition
  - Prevent subsequent exacerbations
    - Vaccination; smoking cessation
- Where do we go...where do we go now....where do we go....
  - 80% of AECOPD are managed as outpatient
  - Studies show that many are not brought the attention of healthcare providers





# AECOPD-Location of care

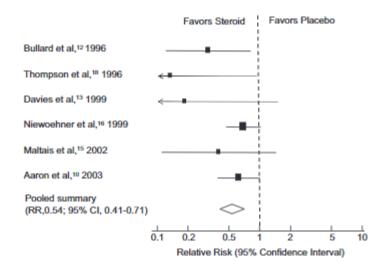

- Indications for admission\*
  - Severe symptoms
    - Resting SOB, high work of breathing/RR, decreased O2 saturation, confusion, drowsiness
  - Acute respiratory failure (very severe AECOPD)
  - New troublesome physical signs
    - Cyanosis, peripheral edema
  - Failure to improve from initial management
  - Presence of serious comorbidities
    - Heart failure, new arrhythmias, etc...
  - Inadequate home support




# AECOPD- Medical management

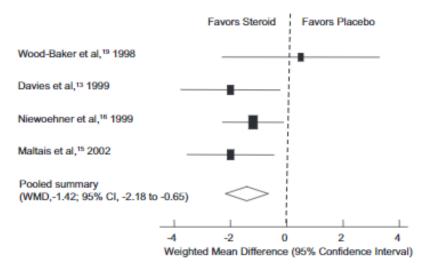
#### • Bronchodilators

- Short-acting beta-agonists
  - Albuterol (2.5 mg/3 cc; 4-8 puffs with spacer)
  - Levalbuterol (alternative)
    - Less tachycardia?
    - \$\$\$
- Short-acting anticholinergics?
  - Ipratropium (500 mcg; 2-4 puffs q 4 hours with spacer)
- MDI vs Nebulizer
  - Actually no superior delivery system
  - Nebs favored by clinicians, but MDI is okay if using more puffs with spacer
    - MDI technique can be poor






### AECOPD – Medical Management


#### • Steroids

- Meta-analysis 2008
- Reduced treatment failure
- Reduce LOS
- Increased hyperglycemia



#### Contemporary Management of Acute Exacerbations of COPD\*

A Systematic Review and Metaanalysis



#### **Reduced Treatment Failure**

#### Reduced Length of Stay


(CHEST 2008; 133:756-766)

### Case – Steroid management

- Which of the following steroid management is closest to what you would choose for an AECOPD?
  - A. 125 mg methylprednisolone q 6 hours for 1 day, followed by 40-60 mg prednisone bid x 3 days, followed by taper over 2 weeks
  - B. 60 mg methylprednisolone q 6 hours for 1 day, followed by 40-60 mg prednisone bid x 3 days, followed by taper over 1 week
  - C. 40-60 mg prednisone daily x 7 days, followed by taper over 1 week
  - D. 40-60 mg prednisone daily x 14 days then stop
  - E. 40-60 mg prednisone daily x 5 days, then stop

# AECOPD – Medical Management

- Steroids!
  - Route?





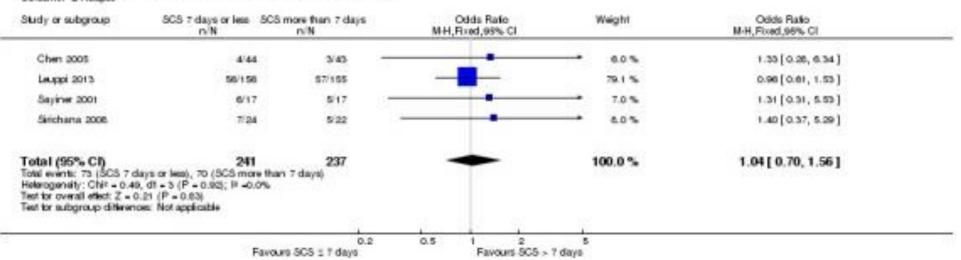
Very well absorbed

More expensive

# AECOPD – Medical Management

• Dose? Low dose (20-80 mg/day as good as high dose IV)

**Table 5.** Association Between Low-Dose Oral Steroid Therapy vs High-Dose IntravenousTherapy and Outcomes in Acute Exacerbation of Chronic Obstructive Pulmonary Disease


|                                                                                                                |                                   | Ratio (95% CI)   |                  |  |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|------------------|--|--|
| Model                                                                                                          | Treatment Failure,<br>OR (95% Cl) | Length of Stay   | Total Cost       |  |  |
| Unadjusted <sup>a</sup>                                                                                        | 0.91 (0.83-1.00)                  | 0.92 (0.91-0.93) | 0.92 (0.91-0.93) |  |  |
| Propensity score– and covariate-adjusted <sup>b,c</sup>                                                        | 0.93 (0.84-1.02)                  | 0.92 (0.91-0.94) | 0.93 (0.91-0.94) |  |  |
| Matched sample adjusted for<br>unbalanced covariates <sup>d</sup>                                              | 0.84 (0.75-0.95)                  | 0.90 (0.88-0.91) | 0.91 (0.89-0.93) |  |  |
| Group treatment for 10% increase<br>in hospital proportion oral<br>steroids, covariate adjusted <sup>b,c</sup> | 1.00 (0.97-1.03)                  |                  |                  |  |  |

#### The Cochrane Database of Systematic Reviews

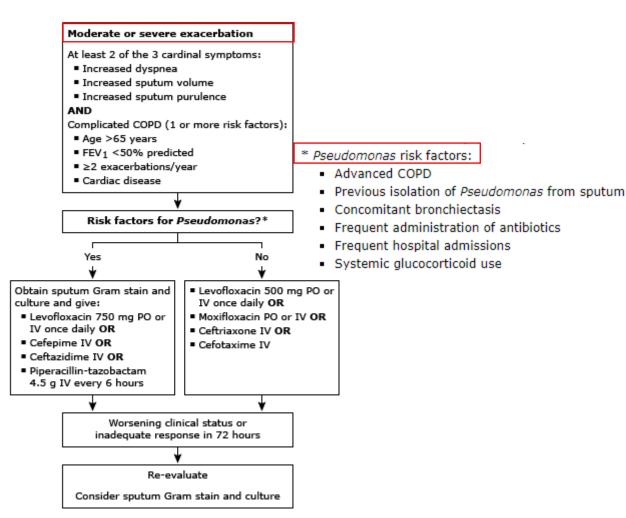
Wiley

#### AECOPD – Medical Management

- Duration- Short (< 7 days as good as long)
  - Time to relapse, return of lung function, mortality, length of stay without differences in large meta-analysis. Adverse effects actually about the same
  - REDUCE study 5 days as good as 14 days

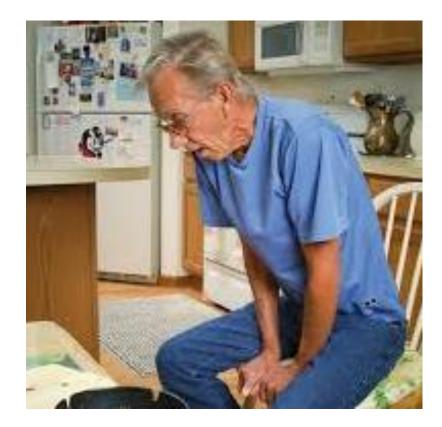


Review: Different durations of confecteroid therapy for exacerbations of chronic obstructive pulmonary disease Comparison: 1 Systemic confecteroids for 7 or lever days vs longer than 7 days Outcome: 2 Relapse


### Case – Steroid management

- Which of the following steroid management is closest to what you would choose for an AECOPD?
  - A. 125 mg methylprednisolone q 6 hours for 1 day, followed by 40-60 mg prednisone bid x 3 days, followed by taper over 2 weeks
  - B. 60 mg methylprednisolone q 6 hours for 1 day, followed by 40-60 mg prednisone bid x 3 days, followed by taper over 1 week
  - C. 40-60 mg prednisone daily x 7 days, followed by taper over 1 week
  - D. 40-60 mg prednisone daily x 14 days then stop
  - E. 40-60 mg prednisone daily x 5 days, then stop

# AECOPD – Medical Management


#### • Antibiotics?

- Evidence suggests improved outcomes and most recommend for hospitalized patients\*
  - Mortality and 30 day readmission?
  - "2 out of 3" rule- Increased dyspnea, sputum change (color/amount), increased cough
  - Mortality benefit in intubated patients
- Which one?
  - UTD algorithm?
  - Azithro and quinolones (QTc)
- How long?
  - 5 days as good as > 7 days\*\*



### Case

- 70 year old man arrives in the ED with significant respiratory distress.
  - 1 week of increased cough, wheezing and SOB
  - 50 PY smoker; active ½ PPD
  - Afebrile. RR 28, O2 saturation 82% RA. 89% on 45% Venturi. Tripodding position.
  - Diffuse expiratory wheezes. CXR shows chronic COPD changes
  - Bronchodilators and steroids are initiated. Full code status confirmed.



Which of the following diagnostic test should be ordered next?

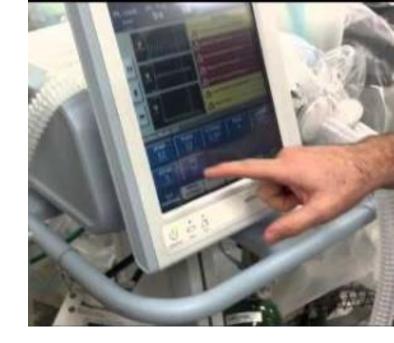
- •A. Chest CTA
- •B. Echo
- •C. Blood gas
- •D. Troponin

# Case- Acute hypercapnic respiratory failure

- ABG 7.24/48/62/27/90% on 45% FiO2
- EKG with sinus tachycardia with multifocal atrial tachycardia (MAT)
- You are called to admit the patient to the floor.
- Which of the following is most concerning regarding floor admission?
  - A. pH 7.24
  - B. CO<sub>2</sub> 48
  - C. MAT on EKG
  - D. PaO<sub>2</sub> 62
  - E. 45%  $F_iO_2$  needed

# AECOPD - Triage

- Indications for ICU
  - Severe dyspnea not responsive to initial treatment
  - Change in mental status (confusion, lethargy, coma)
  - Persistent hypoxia (pO2 < 40) or respiratory acidosis (pH < 7.25)</li>
  - Need for invasive mechanical ventilation
  - Need for vasopressors for hypotension




- What is the next most appropriate step for this patient.
  - A. Intubation and mechanical ventilation
  - B. Non-invasive ventilation
  - C. IV antibiotics
  - D. Smoking cessation discussion
  - E. Initiate hospice discussion

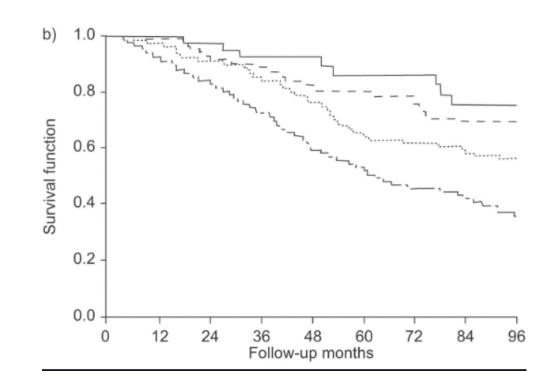
- Indications for non-invasive ventilation (NIV)
  - Respiratory acidosis. pH < 7.35 and CO >45
  - Severe dyspnea with clinical signs of respiratory muscle fatigue/  $\uparrow$  WOB
    - Accessory muscle use
    - Paradoxical motion of the abdomen
    - Retraction of intercostal spaces
  - Persistent hypoxemia despite supplementation
- Non-invasive ventilation advantages in AECOPD with acute or acute on chronic respiratory failure\*
  - Decreased need for intubation
  - Decreased mortality
  - Decreased ICU length of stay
  - Decreased overall length of stay
  - Decreased non-respiratory infections
  - Decreased cost
  - Successful 80% of the time



- Initiating NIV (bilevel)
  - Bilevel
    - Interface Full face mask, nasal mask, nasal pillows
    - Settings
      - Inspiratory Positive Airway Pressure (IPAP)- 8-12 cm H2O
      - Expiratory Positive Airway Pressure (EPAP)- 3-5 cm H2O
    - Close observation for tolerance RT and RN are key to ensure fit and comfort
      - **Cautious** use of sedations may assist in tolerance
  - Indicators of success
    - Decreased WOB
    - Improvement in pH and O2
  - Most who improve do so in the first 1-4 hours



- Indications for invasive mechanical ventilation
  - Unable to tolerate NIV or failure of NIV
  - s/p respiratory or cardiac arrest
  - Diminished consciousness
  - Agitation unable to control with sedation
  - Massive aspiration or persistent vomiting
  - Hemodynamic instability not responsive to fluids and pressors
  - Severe ventricular or supraventricular arrhythmias
  - Life-threatening hypoxia in patients not able to tolerate NIV




# COPD Prognosis

- Risk factors for increased mortality - Chronic
  - BODE index
    - BMI
    - Obstruction severity
    - Dyspnea scale
    - Exercise capacity

Table 2. Variables and Point Values Used for the Computation of the Body-Mass Index, Degree of Airflow Obstruction and Dyspnea, and ExerciseCapacity (BODE) Index.\*

| Variable                     | Points on BODE Index |         |         |      |
|------------------------------|----------------------|---------|---------|------|
|                              | 0                    | 1       | 2       | 3    |
| FEV1 (% of predicted)†       | ≥65                  | 50-64   | 36-49   | ≤35  |
| Distance walked in 6 min (m) | ≥350                 | 250-349 | 150-249 | ≤149 |
| MMRC dyspnea scale‡          | 0-1                  | 2       | 3       | 4    |
| Body-mass index§             | >21                  | ≤21     |         |      |



### **COPD** Prognosis

#### • Risk factors for increased mortality after AECOPD

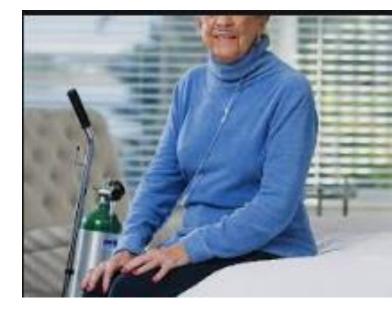
- Age (each decade past 50)
- COPD-related previous admissions
- Dementia
- CO2 > 55 mm Hg

|                                                          | в (s.e.)      | OR (95% CI)         | <i>p</i> -value | Weight |
|----------------------------------------------------------|---------------|---------------------|-----------------|--------|
| Intercept                                                | - 2.12 (0.56) |                     | 0.0002          |        |
| Age <sup>b</sup>                                         | 0.46 (0.08)   | 1.581 (1.357–1.842) | < 0.0001        | 2      |
| COPD related previous admissions (Yes vs. No)            | 0.79 (0.18)   | 2.201 (1.541–3.144) | < 0.0001        | 4      |
| Cardio-cerebro-peripheral vascular diseaseª (Yes vs. No) | 0.47 (0.15)   | 1.598 (1.189–2.148) | 0.0019          | 2      |
| Dementia (Yes vs. No)                                    | 1.09 (0.39)   | 2.973 (1.394–6.340) | 0.0048          | 5      |
| PaCO2                                                    |               |                     |                 |        |
| 45–55 (vs. < 45)                                         | - 0.05 (0.18) | 0.947 (0.663–1.353) | 0.7631          | 0      |
| > 55 (vs. < 45)                                          | 0.47 (0.19)   | 1.601 (1.102–2.326) | 0.0135          | 2      |
| Hospital characteristics                                 |               |                     |                 |        |

# **COPD** Prognosis

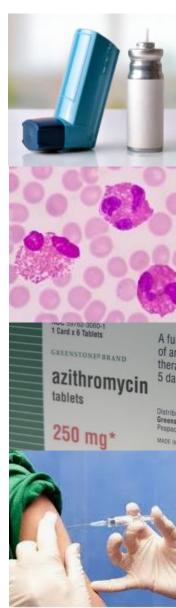
#### • Risk factors for increased mortality after AECOPD

|                                 | Derivation samp  | Derivation sample   |                 |                    | Validation sample        |                 |  |
|---------------------------------|------------------|---------------------|-----------------|--------------------|--------------------------|-----------------|--|
|                                 | N (%)            | Mortality 1 year    | <i>p</i> -value | N (%)              | Mortality 1 year         | <i>p</i> -value |  |
| Risk groups                     |                  |                     | < 0.0001        |                    |                          | < 0.0001        |  |
| Low (0–5)                       | 83 (8.03)        | 7 (8.43)            |                 | 498 (15.39)        | 17 <mark>(3.41)</mark>   |                 |  |
| Low-Medium (6–7)                | 112 (10.83)      | 22 (19.64)          |                 | 513 (15.86)        | 38 <mark>(7.41)</mark>   |                 |  |
| <mark>Medium-High</mark> (8–10) | 412 (39.85)      | 134 (32.52)         |                 | 1307 (40.40)       | 201 <mark>(15.38)</mark> |                 |  |
| <mark>High (</mark> >10)        | 427 (41.30)      | 206 (48.24)         |                 | 917 (28.35)        | 236 <mark>(25.74)</mark> |                 |  |
| AUC (95% CI)                    | 0.740 (0.709–0.7 | 0.740 (0.709–0.771) |                 | 0.763 (0.741–0.784 | 0.763 (0.741–0.784)      |                 |  |


# AECOPD – Discharge recommendations

- Review all clinical and lab data
- Reassess inhaler technique
- Review meds that are being stopped (abx, steroids)
- Managing any co-morbidities
- Palliative care discussions
  - 1-year mortality after AECOPD is 3-30%\*
- Ensure follow up early (< 4 weeks) and late (>12 weeks)
- Pulmonary rehabilitation
- N95 Mask if air pollution/wildfires are factors?
- Review oxygen needs.
- Review maintenance regimen. Medications that can decrease AECOPD
  - Once daily medications now available with 1 (\$), 2 (\$\$), and 3 (\$\$\$) medications




# Criteria for supplemental oxygen

- NOTT trial (1980) and LOTT trial (2016)
- Indications
  - PaO<sub>2</sub> < 56; or saturation < 89%
  - Cor pulmonale: PaO<sub>2</sub> <59; or saturation < 90%
    - EKG with P pulmonale
    - Hct > 55
    - Clinical evidence of right heart failure
  - If qualifies, assess needs with exercise and sleep
  - LOTT If no resting hypoxia, no evidence that treating only exercise-induced desaturations yielded any tangible benefit (mortality, readmission, cost)



# Review medications and vaccination status

- Medications which can prevent exacerbations
  - Long-acting bronchodilators
    - LAMA and LABA
  - Inhaled corticosteroids
    - Frequent exacerbations
    - Asthma overlap
    - Eosinophilia
  - Roflumilast- selective phosphodiesterase inhibitor
    - Severe COPD with chronic bronchitis and frequent exacerbations
  - Chronic azithromycin in frequent exacerbators
    - NEJM 2011- 27% reduction in AECOPD
    - BACE trial 2019 started in hospital; decrease treatment failures at 3 and 6 months
    - Possible adverse effects: QTc and hearing
- Vaccinations
  - Flu and pneumococcal



# Take home points

- COPD is common and has significant morbidity and mortality
- Removing the exposure is the most important management step
- Use spirometry to make the diagnosis and assess severity!
- Symptoms scores and exacerbation frequency determine the COPD phenotype and management
- Use ICS only for appropriate patients
- Vaccinate your patients

#### GOLD COPD 2020. ATS/ERS 2017 guidelines.

**Global Initiative for Chronic** Obstructive Lung Disease CHRO POCKET GUIDE TO COPD DIAGNOSIS, MANAGEMENT, AND PREVENTION A Guide for Health Care Professionals

#### Management of COPD exacerbations: a European Respiratory Society/American Thoracic Society guideline

Jadwiga A. Wedzicha (ERS co-chair)<sup>1</sup>, Marc Miravitlles<sup>2</sup>, John R. Hurst<sup>3</sup>, Peter M.A. Calverley<sup>4</sup>, Richard K. Albert<sup>5</sup>, Antonio Anzueto<sup>6</sup>, Gerard J. Criner<sup>7</sup>, Alberto Papi <sup>®</sup><sup>8</sup>, Klaus F. Rabe<sup>9</sup>, David Rigau<sup>10</sup>, Pawel Sliwinski<sup>11</sup>, Thomy Tonia<sup>12</sup>, Jørgen Vestbo<sup>13</sup>, Kevin C. Wilson<sup>14</sup> and Jerry A. Krishnan (ATS co-chair)<sup>15</sup>

Eur Respir J. 2017;49(3) Epub 2017 Mar 15

# Thank You!

Feel free to email me with questions!

alladag@ohsu.edu