MAYO CLINIC T Renal Response Team: Managing Patients with Kidney Disease

Mira T. Keddis, MD, FACP Division of Nephrology and Hypertension Mayo Clinic, Arizona

Disclosures

 No relevant commercial relationships to disclose

Educational Objectives

At the conclusion of this session, participants should be able to:

- Understand the epidemiology and common causes of hospitalizations in patients with kidney disease
- Be familiar with the evaluation and management of unique complications in the hospitalized dialysis patient
- Recognize the different types of binding resins used for treatment of hyperkalemia
- Understand what to use and what not to use for pain medications in dialysis patients

How many of you have taken care of patients with abnormal kidney function?

How many of you have taken care of dialysis patients in the hospital?

What is chronic kidney disease (CKD)?

- Gradual loss of kidney function over time
- kidney damage or decreased kidney function for three or more months, irrespective of the cause
- Stage III (most common)
 GFR: 30-59ml/min
- Stage IV
 - GFR: 15-29ml/min
- Stage V
 - GFR < 15ml/min

End stage renal disease (ESRD)

- Defined as GFR<15ml/min
- Marks the beginning of the end (time to start dialysis)
 - Varies between patients (typically GFR<8 ml/min)
- Associated with progressive metabolic and clinical complications of renal failure

Your kidney is pretty important

Signs/symptoms of kidney failure

- Hypertension (>95%)
- Insomnia (20-70%)
- Pruritus (25-44%)
- Restless leg syndrome (12-25%)
- Peripheral and pulmonary edema

Why should we care?

- <u>Increased prevalence</u> of kidney disease in the United States
- <u>Up to 17-fold increase in hospitalizations</u> among kidney disease patients compared to general population
- The <u>more severe the kidney disease</u> the more common the hospitalizations

Mix, CH. Am J Kid Dis. 2003; 42(5):972-981

Ilimuro and CKD-JAC Investigators. Clin Exp Nephrol 2019; 23(7):956-968

Shah S. PLoS One. 2019; 16:14

- Highest rates of hospitalization occur in the <u>3</u> months before and the 3 months after starting dialysis
- Hospitalization before dialysis <u>increases</u> <u>mortality</u> on dialysis
- Rate of <u>readmission</u> within 30 days is as high as <u>35%</u> among new dialysis patients
 - Usually in the first 5-10 days after discharge

Shah S. PLoS One. 2019; 16:14 Hickson, LJ. Nephron. 2018; 139(1):1-12

What is the most common cause of hospitalization for kidney disease patients?

- a. Cardiovascular complications
- b. Infections
- c. Hyperglycemia
- d. Fractures
- e. Malignancy

The most common cause of hospitalization and the most common complication and co-morbidity of kidney disease is.....

- 1. Cardiovascular
- 2. Cardiovascular
- **3.** <u>Cardiovascular</u>

Arrhythmia, hypertension, syncope, heart failure, myocardial infarction, peripheral vascular disease, stroke

Graded association between low eGFR and cardiovascular events (CVE)

MAYO CLINIC

Causes of death in incident dialysis patients, first 180 days

Other causes for hospitalizations in kidney disease include:

- <u>Infections</u>: sepsis, pneumonia, skin & urinary tract infections
- <u>Gastrointestinal</u>: infections, liver disease, gastrointestinal bleeding
- <u>Endocrine</u>: glycemic control, electrolyte disorders

Key points

Cardiovascular causes are the most common reason for hospitalization

Objectives

By the end of this session, the attendee will be able to:

- Understand the epidemiology and common causes of hospitalizations in patients with kidney disease
- Be familiar with the evaluation and management of unique complications in the hospitalized dialysis patient
- Recognize the different types of binding resins used for treatment of hyperkalemia
- Understand what to use and what not to use for pain medications in dialysis patients

Management of dialysis patients in common clinical scenarios

- Diabetic ketoacidosis treatment
- Infection evaluation and management
- Pain management
- Post-operative care

Let's take it to the bedside...

©2015 MFMER | slide-20

Case 1

- Mr. DD is a 59 year old man with ESRD due to DM2 on hemodialysis since 2013
- Other co-morbidities include CAD s/p CABGx3, HLD, HTN
- Presented to the hospital on Sunday morning for fatigue, malaise, nausea, vomiting x 3 days
- Last dialysis was a week ago
- He was dismissed from his dialysis unit due to behavioral dyscontrol
- He does not make any urine

Case 1

- Home meds include: amlodipine, aspirin, metoprolol, atorvastatin, sevelamer, sertraline, clonidine patch, hydralazine, lanthanum
- Exam: BP 187/76, HR 68bpm, saturating 83% on room air
- Bibasilar inspiratory crackles, 3+ pitting edema

	Na	144		
	K	7.1 (!)		
	CI	100		
	TCO2	14 (L)		
	Anion Gap	30 (H)		
	Ca	8.9		
	Ionized Ca			
	Phos	11.3 (H)		
	TP			
	Albumin			
	Glucose	125 (H)		
	Bili Total			
	Bili Direct			
	Creat	13.8 (!)		
	Estimated GFR	3.6 * (L)		
	BUN	129.6 (H)		
	Creat-CT, IVP, MRI, Hem			
Special Chemistry				
	Mg	2.9 (H)		

In addition to administering calcium gluconate or chloride, what is the most important step in the treatment of this patient?

Na	-	144		
К		7.1 (!)		
CI		100		
TCO2	!	14 (L)		
Anio	n Gap	30 (H)		
Ca		8.9		
📃 Ioniz	ed Ca			
Phos		11.3 (H)		
TP				
Albu	min			
Gluce	ose	125 (H)		
📃 Bili T	otal			
📃 Bili D	irect			
Creat	t	13.8 (!)		
Estim	ated GFR	3.6 * (L)		
BUN		129.6 (H)		
Creat	-CT,IVP,MRI,Hem			
Special Chemistry				
Mg		2.9 (H)		

- 1. Kayexalate
- 2. Patiromer
- 3. Sodium zirconium cyclosilicate
- 4. Call your friendly nephrologist for emergent dialysis

Hyperkalemia in dialysis patients: what you need to know

Common cause of hospitalizations

Major cause of <u>arrhythmia</u> and <u>sudden</u> <u>death</u>

- ≻Liberal use of IV calcium
 → <u>vascular</u>
 <u>calcifications</u>
- Do not use sodium bicarbonate

Hyperkalemia treatment options in dialysis patients

DIALYSIS DIALYSIS DIALYSIS

Consider binding resins

Sodium Polystyrene

- Ion exchange binding resin (exchanges K for Na)
- Effect is delayed for at least 2 hours
 - 0.7-1.1mEq/L
- FDA warning 2009 for colonic necrosis with powder form with sorbitol
- Avoid in patients with recent surgery, h/o ischemic bowel, intestinal dysfunction
- Never studied in dialysis patients
- Not well tolerated by patients
- Side effects: nausea, diarrhea

Patiromer (Veltassa) Approved 2015

- Ion exchange binding resin (exchanges K for Calcium)
- Mean decrease in K was 0.5-1mEq/L
 - Over 52 week treatment period
- Side effects: constipation, hypomagnesemia, nausea
- Must space it out from other meds by at least 3 hours
- Approved for use in dialysis and non-dialysis CKD patients

Chronic maintenance use of patiromer can lower serum potassium

Kovesdy CP Kidney Int Rep (2019) 4 301 309

02015 MFMER | slide-3

ZS-9 (Lokelma)- Approved 2018

- Ion exchange binding resin (exchanges K for Na and H+)
- Mean decrease in K 0.5-1.0 mEq/L (dose dependent)
 - Over 28 day treatment period
- Side effects: edema, hypokalemia

Sodium zirconium cyclosilicate (SZC)

 Randomized double blind study comparing SZC to placebo → effectively lowered potassium when used over 4 week period

Fishbane S. JASN 2019. 30 (9)

Summary of binding resins in dialysis patients

SPS	Patiromer	ZSC		
Variable time of onset 2-6 hours	7-48 hours	1-6 hours		
Duration of effect: 6-24 hours	12-24 hours	4-12 hours		
Not recommended for acute hyperkalemia management	Not recommended for acute hyperkalemia management	May be used for acute hyperkalemia		

Beccari MV. Core Evid 2017;12:14-24

D2015 MFMER | slide-33

Key points

Hyperkalemia is common and associated with arrhythmia and sudden death

Treatment of choice is EMERGENT HEMODIALYSIS

□Use intravenous calcium judiciously and avoid the use of sodium bicarbonate

Consider Patiromer and ZSC for chronic management

Case 2

- Ms. DC is a 50 year old with type 1 DM s/p pancreas and kidney transplant both of which failed in 2013 now with ESRD on hemodialysis on Tues/Thurs/Sat schedule
- Presented to the ED after missing three dialysis sessions due to nausea and weakness
- On exam: BP 154/87, HR 83 bpm, afebrile, 10kg above usual dry weight
 - Distant heart sounds, decreased BS at lung bases
 - 3+ pitting edema

Patient is diagnosed with DKA. What is the best treatment approach for this patient?

	-		
 General Chemistry 			
Sodium Serum	Δ	121	2
Potassium Serum	Δ	5.9	2
Chloride Serum	Δ	82	2
Total Carbon Dioxide	▲	18	2
Anion Gap	Δ	21	2
Calcium Serum	\mathbf{A}	8.5	
Ionized Calcium	Δ	4.30	
Phosphorus Serum	▲	7.5	
Protein Total Serum		7.5	
Albumin Serum	Δ	2.8	
Glucose, Plasma/Serum	Δ	848	2
Bilirubin Total		0.2	
Creatinine Serum	Δ	9.0	
Estimated Glomerular Filtrati	Δ	5.6	
Blood Urea Nitrogen	Δ	91.7	
Lactate, Plasma	▲	3.30	2
Special Chemistry			
Magnesium	▲	2.8	
Vitamin D 25 Hydroxy			
😑 Glucose Studies			
Glycosylated Hemoglobin A1C			
Beta-Hydroxybutyrate	Δ	0.9	

- 1. Insulin drip + dialysis
- Insulin drip + dialysis + 1L of normal saline
- 3. Insulin drip + dialysis + 1L of 0.45% normal saline
- Insulin drip + dialysis + 1L of normal saline + K replacement

Unique aspects of DKA in dialysis patient

- DKA in dialysis is very rare
 - Reduced insulin clearance (renal)
 - Improved insulin sensitivity with dialysis
 - Decreased renal gluconeogenesis
- Volume depletion is uncommon
 - No osmotic diuresis
 - Extracellular volume expansion more common
- High potassium balance
 - No GFR + low insulin state + hypertonicity

Key points

Key aspects of management of DKA in a dialysis patient is INSULIN

- Fluids and potassium replacement not necessary and can be harmful
- Be careful not to apply hospital DKA care sets to dialysis patients

Case 3

- Ms. NC is a 29 year old female with DM1 complicated by retinopathy, neuropathy and ESRD on home hemodialysis (5x/week) for last 5 months via tunneled dialysis catheter who was called to the hospital to receive a combined kidney-pancreas transplant
- ROS: tired with chills last two dialysis sessions, new onset left shoulder pain x 2 weeks, chronic dry cough x 4 weeks
- On exam temp 38.6, BP 183/99, HR 98bpm, saturating 83% on RA
 - Significant left shoulder pain with passive movement

Labs

Са	8.5	ESR	94
Phos	9.7	CRP	>300
Alb	3.2		

©2015 MFMER | slide-40

How would you work up this patient's febrile illness?

- 1. Peripheral blood cultures
- 2. Peripheral blood cultures + chest x-ray
- 3. Peripheral blood cultures + chest x-ray + shoulder x-ray
- Peripheral blood cultures + culture from each port of the dialysis line + chest x-ray + shoulder x-ray

What is the most likely cause of this patient's fever?

- 1. Pneumonia
- 2. Tunneled dialysis catheter infection
- 3. Septic arthritis
- 4. Bacteremia
- 5. Endocarditis
- 6. Any of the above

Tunneled dialysis catheter

- Easiest & fastest access
- 80% of patients starting dialysis use catheter
- Associated with highest risk of infection (10x) and mortality compared to AV fistula or graft
- Two main complications:
 - Catheter malfunction
 - Catheter infection
 - Exit site
 - Systemic bacteremia

Tunneled dialysis catheter related infection

- 35-54% rate of catheter associated bacteremia within 3-6 months of insertion
- 5-10% rate of metastatic infectious complications
 - Staph aureus \rightarrow up to 40%
- Skin flora: staph and Strep are most common organisms

Back to our patient

- Transplant was cancelled and she was transitioned to general medicine service for further workup
- CXR \rightarrow pulmonary edema/ no pneumonia
- Shoulder x-ray \rightarrow normal
- Peripheral and dialysis catheter blood cultures:
 - Coag negative staphylococcus
 - staph Lugdunensis
- Left shoulder synovial fluid aspirate
 - staph Lugdunensis
- Persistent bacteremia despite 3 days of vancomycin

→Echocardiogram

Back to our patient

- Right atrial 'thrombus' enlarged despite adequate anticoagulation and antibiotic therapy
- Operative removal of the mass
 - 'a multi-lobed gelatinous collection with the bulk of the tumor being the consistency of an egg yolk with a thin layer of film of outer consolidation and a near-liquid cavity'

Key points

Must obtain blood cultures from each lumen of dialysis catheter AND peripheral in all dialysis patients with suspicion for infection

- Low threshold to check echocardiogram to rule out endocarditis
- Do not let the SUN SET on a dialysis patient presenting with fever!

Case 4

- Ms. CA is a 41 year old female with ESRD due to lupus nephritis on hemodialysis for 9 months via a tunneled dialysis catheter
- Admitted for MRSA dialysis catheter associated bacteremia
- She is about to be discharged from the hospital and requires 2 weeks of intravenous vancomycin with vancomycin trough level monitoring to maintain level between 15-20

What is the best approach for administering intravenous vancomycin in this patient?

- 1. Place peripherally inserted central catheter (PICC line) and coordinate with home health administration of vancomycin
- 2. Coordinate with patient's outpatient dialysis unit to administer vancomycin after dialysis using patient's tunneled dialysis catheter
- 3. Coordinate with home health administration of vancomycin via small bore cuffed tunneled central catheters (TSB-CVC)

PICC line in dialysis patients

- Associated with delay in establishing a working vascular access (fistula or graft)
- Associated with high likelihood of failed fistula
- Associated with shorter survival on dialysis

McGill RL. et al. Clin J Am Soc Nephrol 11: 1434-144

2015 MFMER | slide-51

Why are PICC lines evil?

Create venous injury

- Promote venous thrombosis (as high as 38%)
 - Cephalic and basilic sites
 - Golden veins for fistula creation
- Increase risk of vascular sclerosis \rightarrow stenosis

What are the alternatives?

- Explore options of antibiotic administration after dialysis using the patient's dialysis access (fistula or catheter)
- Consider small-bore tunneled internal jugular catheter
 - Less risk of venous thrombosis or stenosis
 - Avoid cannulation of cephalic and basilic veins

Key points

Think twice before ordering PICC on your dialysis patient

National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF-KDOQI) recommends AGAINST the use of PICCs in patients with CKD

Key points

- Talk with your nephrologist and dialysis center first
- Explore use of small-bore tunneled internal jugular catheter if available at your hospital
- Preserve the veins of your dialysis patient!

Case 5

- Ms. NS is a 63 year old female with ESRD due to DM & HTN admitted for leg pain
- Found to have severe anemia due to bilateral iliopsoas hematoma
- Oxycodone was not adequate for pain control
- Morphine 2mg IV pushes q4hr given
- 12 hours later patient became confused and disoriented

What of the following is the best treatment approach for her pain?

- 1. Tramadol (extended release)
- 2. Aleve
- 3. Codeine
- 4. Hydromorphone
- 5. High doses of morphine

What NOT TO USE in kidney disease

Medication	Why?	What to do?
<u>Morphine</u>	Accumulation → crosses blood-brain barrier → suppress CNS respiratory center	-Dose reduce in CKD -GFR: 20-50: reduce dose by 50% -GFR: 15-20: reduce dose by 75% -GFR<15: avoid
<u>Codeine and</u> <u>hydrocodone</u>	Accumulation and prolonged half life \rightarrow nausea, vomiting, hypotension, respiratory arrest	Avoid use in ESRD Use lowest doses for CKD
Extended release Tramadol	Has not been studied in patients with CKD	Use short acting Tramadol instead

)∂6)

Medications to use in ESRD

Medication	Pain severity	Dose
Acetaminophen	Mild	650mg q6hr as needed
Oxycodone	Moderate	5mg q4-6hr as needed
Tramadol (short acting)	Moderate	50mg q12hr dose after dialysis
Hydromorphone	Severe	1mg q6hr as needed
Fentanyl	Severe	12.5-25µg patch *only use in patients who have been on opioids prior
Methadone	Severe	

)**)**6)

Neuropathic pain management in kidney disease patients

- Duloxetine should not be used for GFR<30ml/min
- Gabapentin:
 - 30-59ml/min → max 1400mg/24hrs
 - 15-29ml/min → max 700mg/24hrs
 - <15ml/min \rightarrow max 300mg/24hrs
- Pregabalin:
 - 30-59ml/min → max 300mg/24hrs
 - 15-29ml/min → max 150mg/24hrs
 - <15ml/min → 75mg/24hrs</p>

Key points

Avoid MORPHINE and codeine in patients with ESRD

Remember to check drug-dosing adjustment for your dialysis patient

□Start low and go slow

©2015 MFMER | slide-62

True or False

Patients on dialysis should avoid the use of NSAIDS and contrast exposure.

- 1. True
- 2. False

True

- Maintain and protect residual renal function in dialysis patients
- Residual renal function can improve dialysis patient survival
- Avoid NSAIDS and contrast studies if possible

True or False

Tunneled dialysis catheter in a dialysis patient can be used for maintenance IV fluids and blood draws.

- 1. True
- 2. False

False

When to use and who can use dialysis catheter?

- Should only be used by <u>dialysis nurse</u>
- Used for the dialysis procedure, to draw cultures, administer blood transfusions on dialysis, administer antibiotics while on dialysis
- Outside of these scenarios, dialysis catheter should only be accessed during an emergency!

True or False

- Dialysis patients fasting for surgery or procedure should receive maintenance IV fluids to avoid dehydration.
- 1. True
- 2. False

False

 Dialysis patients are at increased risk of volume overload

Key points

- Preserve residual renal function in patients who still make urine
- Avoid the use of dialysis catheter outside the dialysis session
- Avoid maintenance IVF in fasting dialysis patients

Educational Objectives

At the conclusion of this session, participants should be able to:

- Understand the epidemiology and common causes of hospitalizations in patients with kidney disease
- Be familiar with the evaluation and management of unique complications in the hospitalized dialysis patient
- Recognize the different types of binding resins used for treatment of hyperkalemia
- Understand what to use and what not to use for pain medications in dialysis patients

Questions

©2015 MFMER | slide-71

)