Periprosthetic Fractures

Clifford B. Jones, MD FAAOS FAOA FACS

Chief Orthopaedic Surgery, Dignity Health - Phoenix

Creighton Medical School - Phoenix Phoenix AZ

Disclosure

- Stryker: Education & Consultant
- OsteoConcentric: Consultant
- Lippincott: Editorial Board

U.S. Population Distribution, 2007

NewGeography.com

Source: U.S Census Population Projections

Total Joint Arthroplasty

Femur - Total Hip Arthroplasty

Vancouver Classification

- Consolidates the 3 most important factors
 - Site of the fracture
 - Stability of the implant
 - Quality of the surrounding bone
- Other factors: Age, general health

Vancouver Classification System

Vancouver Classification System

Vancouver A - Gr Troch Fx

Vancouver Classification System

Principles

Splint the **entire** bone

Screws when possible

Maintain fracture environment that **optimizes** fracture healing

Biomechanics

- Plate with distal screws and proximal cables better than allograft struts and cables alone
- Screws better than wires or cables
- Locked screws advantage for osteoporotic bone

Treatment

ORIF

Standard screw/plate devices

Screw/plate devices modified to accept cables
Ogden Concept

Screw/plate/cable devices with allograft struts

Allograft struts alone

New fixed-angle screw/plate devices

Treatment Plates

Why so many techniques?

Driven by the presence of the prosthesis \pm cement mantle

Bicortical screws:

Difficult

available at level of lesser trochanter and proximal.

Unicortical screws:

questionable fixation potential

Cables:

questionable fixation potential

Effect on cement mantle?

Proximal fixation remains challenging

Treatment

Allograft Struts

Allograft Struts

- Cabled around the fracture
- "Biologic plates"
- Ultimately incorporates and increases bone stock
- Similar (identical) modulus of elasticity, prevents stress shielding of the host bone.

Injury Immediate ORIF with allograft struts

Dennis et al, 2000

Biomechanical study

- Testing of 5 constructs
 - Simulated fx around THA
 - Good quality bone –synthetic femur
 - Cable ready plates,
 cables, and cortex screws

Dennis MG, et al, J Arthroplasty 15:523, 2000

Dennis et al, 2000

Constructs included:

- 6 cables
- 3 cables proximal & 3 bicortical screws distal
- 3 unicortical screws proximal & 3 bicortical screws distal
- 3 cables & 3 unicortical screws proximal and 3 bicortical screws distal
- 2 allograft cortical struts, 6 cables, & no plate or screws

Dennis MG, et al, J Arthroplasty 15:523, 2000

Classic Ogden Concept

Treatment

Biomechanics: Summary

Addition of unicortical screws \uparrow fixation

Replacement with bicortical screws \uparrow fixation

More stable than 2 allograft struts and cables

Dennis, <u>J. Arthroplasty</u>, 2000 Dennis, <u>J. Orthop. Trauma</u>, 2001

Treatment

Successful Clinical Results

Allograft Struts

- Penenberg, Orthop Trans, 1989
- Chandler, Semin Arthrop, 1993
- Wong, OCNA, 1999
- Head, CORR, 1999
- Haddad, JBJS-Br, 2000

• ORIF (Cable/Plate)

- Haddad, Injury, 1997
- Kamineni, Injury, 1999
- Tadross, J. Arthrop, 2000
- Venu, Injury, 2001

ORIF (DCP)

- Stern, Orthop Rev, 1991
- Serocki, J. Arthrop, 1992
- Jukkala-Partio, Ann Chir Gynae, 1998
- Siegmen, Unfallchirg, 1998

Osteoporotic Bone

Simulation of Osteopenic Bone*

Axial load required to displace selected plate/screw constructs by 0.5 mm

Construct Type

* Simulation of osteopenic bone performed with 15 lb/ft3 foam

B1

B1

Bicortical locking screws
Unicortical locking screws

Span the entire femur

B1

Vancouver Classification System

87 Female, L THA 1992, R THA 1995 3 mo increasing pain L thigh Initial Presentation to ED

Vancouver Classification System

Treatment

Distal to stem of the prosthesis

Treat with "standard" ORIF techniques
Not so simple.....

Treatment

- Basic Principles
 - Span beyond the prosthesis tip to avoid stress
 riser
 Harris, J. Trauma, 2003
 - Still need to worry about proximal fixation
 - Still need to worry about poor bone

Locked implant.....

Femur - Total Knee Arthroplasty

Classification

- Type I
- Undisplaced fracture
- Prosthesis intact

- Type II Displaced fracture
 - Prosthesis intact
- Type III
- Displaced or Undisplaced fracture
- Prosthesis loose

Lewis and Rorabeck (1997)

Treatment Goals

- Restore axial alignment and length
- Stable fixation
- ROM as soon as possible
- Maintain fracture environment suitable for boney healing
- Return to pre-injury mobility

ORIF best accomplishes these goals

Treatment Options

- Retrograde intramedullary nail
- Conventional plating
- Locked plating
- Revision with stemmed prosthesis, allograft, or tumor prosthesis

The Problem(s)

- Usually elderly
- Osteolysis
- Limited distal fixation due to TKA
- PS Cam design of TKA
- Notch Canal diameter mismatch
- Early ROM desired

The Problem(s)

Distal Fixation

Retrograde IMN vs ORIF

- Limited literature
- PS vs CR
- Canal diameter considerations
- TKA Notch vs canal diameter
- Femoral stem above?

Inter-Device Distance (IDD)

Retrograde Nailing

Is the notch open or closed?

If open, is it large enough?

Narrow notch and closed
box seen in posterior
stabilized knees

Retrograde Nailing

Problems:

Stability of distal segment with interlocking bolts
Toggle of the nail in the distal metaphysis

Nail size
Uniplanar interlocking bolts
Bone quality
Capacious distal metaphysis
Distal fracture patterns

Retrograde Nailing

Nail size canal diameter mismatch

Limited fixation distally

Poor stability

Poor quality bone

Largely replaced by locking implants

Biomechanics

Bong, Egol, Koval J. Arthroplasty Oct. 2002

Biomechanical study comparing retrograde inserted intramedullary nail and LISS for supracondylar fractures proximal to TKA

The retrograde inserted nail may provide greater stability.

Biomechanical Evaluation of the LISS, Angled Blade Plate, and the Retrograde Intramedullary Nail for the Fixation of Distal Femur Fractutres: An Osteoporotic Cadaveric Model Kregor: OTA 2002

- Osteoporotic cadaveric femuri (age 70 yo)
- Tested to failure in axial loading and torsion
- Axial loading: 34% higher load for LISS Vs blade plate and 24% higher than IMN
- Loss of distal fixation with CBP and IMN
- Plastic deformation with LISS and no loss of distal fixation
- Torsion strength same for CBP, but higher for IMN

Retrograde Intra-medullary Nail

Nail size canal diameter mismatch

If Too Posterior -> Hyperextension

Newer IMN Designs

Clinical Evidence?

LISS

- Schultz M, Injury, 2001
- Kregor PJ, Injury, 2003
- Althausen PL, J. Arthroplasty, 2003
- Markmiller M, CORR, 2004

Retrograde Nail

- McLaren AC, CORR, 1994
- Murrell GA, J. Arthroplasty, 1995
- Rolston LR, JBJS-A, 1995
- Jabczenski FF, J. Arthroplasty, 1995
- Bezwada HP, J. Arthroplasty, 2004

Plate Position - Condyles

Plate Position - Condyles

Obtain Length

12 WEEKS

Periprosthetic Supracondylar Fracture

7 months post-op

Healed Supraconcylar Fracture

Healed Supracondylar Fracture and Shaft Fracture Fracture

Post Operative

Screw Pull Out & Cut Out

Femur - Total Knee Arthroplasty

Allograft-Prosthetic Composite

Constrained Rotating Hinge

Constraint comes at a price!

Femur - Total Hip & Knee Arthroplasty

86F, RA, 6 yr MVA

70 yo 280 pounds TMTC previous ops

Tibia - Total Knee Arthroplasty

Treatment Options

1st Step

To establish whether implant is loose

2nd Step

- To identify fracture displacement
- To decide if reduction is needed

3rd Step

 To determine appropriate treatment for displaced fracture

Tibia - Total Knee Arthroplasty

Final ORIF

Tibia - Total Knee Arthroplasty

76M, TKA 5 yr, Open IIIB Tibia

Start Site

Ream

Insert IMN

74 yo M, CABG, IDDM

CR/ LLC

Humerus

Summary: Patient

Periprosthetic fracture incidence increasing – younger age

Periprosthetic fxs - difficult manage – Implant, Osteoporosis

Patients may be difficult to manage – NWB

Team approach – Trauma & TJA, Medicine, Geriatrics

Consider functional goals for patient – WB ASAP

Consider skill of the surgeon – treat 1° or wait/refer

Summary

Assess fracture location

Stability of prosthesis

Adequacy of available bone

Summary

Unstable prosthesis: Revise

Stable prosthesis: Fix

Plate long... (protect the whole femur)

Locking implants!

Locking plates often superior to retrograde nails (and certainly conventional plates)

Summary

Supplemental struts for *bone deficiency* (not instability)

Cables of questionable value

Direct reduction in simple patterns, bridging in complex fracture patterns

Overlap implants (don't leave a gap)

Conclusion

Check for Stability of Implant

Check for Quality of Bone

Treat Entire Bone

Beware of Transverse Fracture at Tip of Stem

