Tibial Plateau Fractures, Tibial Shaft Fractures, and Knee Dislocations

Daniel Coll, MBA, PA-C, DFAAPA

Tahoe Forest Hospital District

Truckee California

CONFLICTS

No conflicts regarding this discussion

Acknowledgements

OTA Resident Core Curriculum lectures made by the Orthopaedic Trauma Association for Education were used as the foundation of this presentation.

I wish to acknowledge all of the many OTA Authors' work that prepared me today.

At the end of this session, participants will be able to:

- Identify common pitfalls with knee dislocations and fractures of the proximal tibia and shaft.
- Identify injury patterns, physical exam techniques/evaluation, and care.
- Explain imaging modalities and some of their limitations.

Anatomy: Tibiofemoral Joint

- Bones
 - femoral condyles
 - tibial plateau
- Dissimilar surfaces
- Little/No inherent bony stability
- May be cause of additional instability if fractured

Anatomy of the Tibial Plateau

- Proximal Tibia
 - Medial and lateral plateau or condyles
 - Medial Plateau-Concave
 - Lateral Plateau-Convex
 - Bony prominences (attachments)
 - Intercondylar eminence (ACL)
 - Tibial tubercle (Patellar Tendon)
 - Gerdy's tubercle (ITB)
 - Joints
 - Knee joint (Distal Femur/Patella)
 - Proximal tib/fib joint

Stabilizers of the Tibiofemoral Joint

- Soft tissues: stabilize while allowing ROM
 - Ligaments
 - Joint capsule
 - Menisci
 - Musculotendinous units (DYNAMIC)

Ligament Stabilizer Anatomy

- ACL
- PCL
- MCL, posteromedial capsule
- LCL & PLC (popliteofibular ligament, popliteus, capsule, ITB, biceps femoris)

Meniscus

Lateral meniscus

- More circular than medial
- Covers more of articular surface than medial
- Attached to PCL via ligaments
 - Humphry (anterior)
 - Wrisberg (posterior)
- No attachment to LCL
- Bears more joint reactive force

Medial meniscus

- "C" shaped
- intimately attached to MCL
- bears equal joint reactive force as bone

Vascular Anatomy

- Popliteal artery at risk for being tethered
 - Adductor hiatus
 - Soleus arch
- If blood flow through popliteal artery disrupted Inadequate blood supply

Anatomy: Nerves

- Influencers Long Term Outcome
 Peroneal nerve
 - More commonly injured
 - Tethered around the fibular neck
 - Mechanism of injury
 - Tension (Varus ± hyperextension, Translation (Anterior /Posterior dislocation)
 - Direct impact
 - latrogenic (varus/hyperextension during aggressive EUA (!))
- Tibial nerve

Dislocation Epidemiology

- True incidence is underreported
 - Spontaneous reduction
 - Definition (documented complete dislocation vs. ≥1 cruciate + one collateral injury)
 - Obesity interferes with exam and mechanism
- Presented in a variety of clinical practices
 - Trauma Center
 - Sport Medicine
 - General Orthopaedics

BEWARE OF THE TIBIAL PLATEAU FRACTURE, ESPECIALLY PEDIATRIC, CAUSED BY UNRECOGNIZED DISLOCATION

Dislocation Epidemiology

- 0.2 % of all orthopaedic injuries
- Young
- MVA, sports trauma
- 14-44 % associated w multiple trauma
- Bilateral 5 %

Tibial Plateau Demographics

- 1% of all fractures
- 8% of all fractures in the elderly
- Lateral plateau involved 55-70%
- Medial plateau involved 10-20%
- Both involved 10-30%

Plateau Classification

Schatzker, Clin Orthop, 1979

- Type I Split Lateral Tibial Plateau Fx
- Type II Split/Depression Lateral Plateau Fx
- Type III Pure Depression Lateral Plateau Fx
- Type IV Medial Tibial Plateau Fx (Fx Disloca)
- Type V Bicondylar Split Fx
- Type VI Tibial Plateau Fx with Metaphyseal -Diaphyseal Separation

Current Discussion on 3 Columns of Plateau Fractures

Tibia Fractures

- Most common long bone fracture
- 492,000 fractures yearly

- 100,000 non-unions per year
- Open fractures of the tibia are more common than in any other long bone

Tibia History & Physical

- Low Energy
 - Minimal soft-tissue injury
 - Less complicated fracture pattern and management decisions
- High Energy
 - High incidence of neurovascular energy and open injury
 - Low threshold for compartment syndrome
 - Complete soft-tissue injury may not declare itself for several days

Tibial Fracture Associated Injuries

30% of patients will have multiple injuries

- Ipsilateral Fibula Fracture
- Foot & Ankle injury
- Syndesmotic Injury
- Ligamentous knee injuries

-Ipsilateral Femur Fx "Floating Knee"

-Neurovascular Injury
More Common In:
High Energy
Proximal Fracture
Floating Knee
Knee Dislocation

Tibial Shaft Classification

- Numerous systems
 - Use Clear Simple Description
- Important variables
 - Fracture Pattern
 - Location
 - Comminution
 - Associated Fibula Fx
 - Degree of soft-tissue injury

Knee/Plateau/Tibia Physical Exam

- Neurologic and vascular exam of extremity including ABI's if indicated Johansen K, J Trauma April 1991
- Wounds should be assessed once in ER, then covered with sterile gauze dressing until treated in OR- digital camera / cell phone
- True classification of wound best done after surgical debridement completed

Dislocation Indicators

If any of the following present r/o Multiligamentous injury (Spontaneous reduction UNDERDIAGNOSED)

- Hyperextension
- Popliteal ecchymosis
- Vascular insufficiency
- Peroneal nerve deficit
- Diffuse tenderness butAbsence of hemartrosis(capsular disruption)
- Obese pt low energy fall

Vascular Examination

- Color, temperature, Pulses
- Dorsalis Pedis a. & Tibialis Posterior a.
- ABI (Ankle Brachial Index)
 - ≥0.9: Serial examination
 - <0.9: further study/exploration
 - Johanson, K, JT
- Reduce if dislocated and Reexamine

Vascular Injury

- ~20% (5-30%) of all dislocations
- URGENT if ABI < 0.9: further study/exploration
- EMERGENCY if NO distal perfusion
- Patterns of Vascular injury
 - rupture
 - incomplete tear
 - intimal injury (may cause thrombosis)

Neurologic Injury

- Common peroneal nerve palsy
- Incidence ~20% (10-40%)
- Most Common with varus injury
- Usually axonothmesis
- PROGNOSIS is POOR
- Complete recovery ~ 20%

Compartment Syndrome

- Incidence:
 - **5-15%**
- History
 - High-Energy
 - Crush
 - Prolonged Down Time
 - Direct External Compression
- Exam
 - 4 Compartments
 - 6 P's
 - PAIN
 - PAIN WITH PASSIVE STRETCH
 - Parasthesias
 - Pulsless
 - Pallor
 - Paralysis

Compartment Syndrome Remains a Clinical Diagnosis

Priorities

- ABC'S
- Assoc Injuries
- Tetanus
- Antibiotics
- Soft Tissue
 Management
- Initial Care to final Fixation
- Long term issues

Radiographic Evaluation

- AP, Lateral on Large Cassettes
 - Check joint above & below
- Obliques
 - Internal rotation view
 - Shows postero-lateral fragment
- Traction Films
 - Defines fragments
 - Bridging Ex-fix can provide traction
- Plateau CT scan with reconstruction
 - Obtain after ex fix if using/spanning
 - Shaft fractures for Occult Extension
- Arteriography when necessary (or check ABI > 0.9)
- ? MRI suspected fxs or soft tissue injury

Timing of Surgery

- Stable, resuscitated patient
- Define fracture(s)
- Soft tissue envelope
 - Swelling
 - Ecchymosis
 - "Damage Control Orthopaedics"
- Positioning of patient
 - Other injuries affect positioning

"Damage Control Orthopaedics"

- Temporary Stabilization
 - Soft Tissue Rest
 - Bony/Joint Stabilization
- Bridging External Fixator
 - Across the Knee
 - Pins Out of Zone of ORIF in Tibia
 - Unstable Dislocations and Vascular Repairs
 - Types V & VI Primarily
- Repair/ORIF When Soft Tissues Allow

Surgical Techniques

- Joint Distraction
 - Temporary Bridging ExFix or Femoral Distractor
- Joint Depression
 - Reduce From Below (Lamina Spreader, Curved Tamps)
 - Bone Graft Defects
- Compress with Lag Screws
- Repair Associated Ligament Avulsions
 - Restore ligamentous stability
- Preserve Meniscus
- Restore Alignment of Proximal Tibia
- Percutaneous Reuction

Unicondylar

- Single plate or screws (I)
- Rarely need locking plate
 - Osteoporotic
 - Only available implant
 - Can use non-locking screws
 - Pre-contoured newer gen plates
- Support depression
 - Bone graft
 - Substitutes

Fixation Lateral Plateau Fractures

Traditional

- large fragment "L" or "T" buttress plate
- 6.5mm subchondral lag screws
- 4.5mm diaphyseal screw

Current Recommendation

- small fragment fixation
- pre-contoured peri-articular plates
- clustered subchondral k-wires
- "rafting" subchondral screw fixation

Bicondylar

- Single Locked Plate
- Dual Plates
 - Definitely if non-locking
- Beware the Posteromedial fragment
 - Direct Reduction and Antiglide Plate
 - Indirect Reduction and AP screws
- Tibial Tuberosity Avulsion
 - AP screws
- Support depression
 - "rafting" subchondral screw fixation

Posteromedial and Posterior Column Fragments BEWARE!!

- Often missed
- Must Identify
- Must Reduce
 - -Increasing Transition to Direct Reduction over Indirect
- Must Stabilize with perpendicular or "Orthogonal" fixation

Posterior Approach(es)

Closed Tibial Shaft Fracture

- Broad Spectrum of Injures w/ many treatments
- ClosedManagement
- Intramedullary Nails
- Plates
- External Fixation

Non-Operative Treatment Indications

- Minimal soft tissue damage
- Non-intact fibula
 - Higher rate of nonunion & varus with intact fibula
- Stable fracture pattern
 - < 5° varus/valgus
 - < 10° pro/recurvatum
 - < 1 cm shortening
- Ability to bear weight in cast or fx brace
 - Requires frequent follow-up

Post Tibia Fracture Ankle Motion

25% Post Tibia
 Fracture will lose
 25% of Ankle ROM

Surgical Indications

- Patient Characteristics
 - Obesity
 - Poor compliance with nonoperative management
 - Need for early mobility
- Injury Characteristics
 - High Energy
 - Moderate soft-tissue injury
 - Open Fracture
 - Compartment Syndrome
 - Ipsilateral Femur Fx
 - Vascular Injury

- Fracture Characteristics
 - Meta-Diaphyseal location
 - Oblique fracture pattern
 - Coronal Angulation > 5°
 - Sagittal Angulation > 10°
 - Rotation > 5°
 - Shortening > 1cm
 - Comminution > 50% cortical circumference
 - Intact fibula

Surgical Options

Intramedullary Nail

ORIF with Plate

External Fixation

Combination of fixation

Advantage of IM Nail

- Less malunion
- Early weight-bearing
- Early motion
- Early WB (load sharing)
- Patient satisfaction
 - L Bone, JBJS
- Cost
 - Less expensive to society when compared to casting

Disadvantages of IM Nail

- Anterior knee pain
 - 2/3, improve w/in year
- Risk of infection
- Increased hardware failure with unreamed nails
- Thermal Necrosis
- Medial HW prominence

Reamed vs. Nonreamed Nails

- Reamings (osteogenic)
- Larger Nails (& locking bolts)
 - Hardware failure rare w/ newer nail designs
- Damage to endosteal blood supply?
 - Clinically proven safe even in open fx

Reamed vs Unreamed: SPRINT

Tria Bhandari M, Randomized trial of reamed and unreamed intramedullary nailing of tibial shaft fractures *JBJS*, 2008

- Possible benefit of reamed IM nails in closed fractures
- No difference in open fractures
- Delaying reoperation for nonunion for at least 6 months significantly lowers the need for reoperation

Expanded Indications

- Proximal 1/3 fractures
 - Beware Valgus and Procurvatum
- Distal 1/3 fractures
 - Beware Varus or valgus
 - Beware of intraarticular extension

Hyperflexed position

- Historically Infrapatellar Nailing
- Pulls patella proximally to allow straight starting angle
- Universal distractor

Semiextended Position and now Suprapatellar

- Neutralize quadriceps pull on proximal fragment
- Medial parapatellar approach
 - subluxate patella laterally
- Now Many Manufacturers offer Suprapatellar Options with Benefits of Semi-extended

Suprapatellar

https://m3.healio.com/~/media/journals/ortho/2015/12_december/10_3928_01477447_2 0151119_06/fig1.jpg

Blocking (Poller) Screws

- Functionally narrows IM canal
 - Increases strength and rigidity of fixation
 - Place on concave side of deformity

- 21 patients
 - All healed within 3-12 months
 - Mean alignment 1° valgus, 2° procurvatum

Krettek JBJS '99

Technique

- Screws placed on concave side of deformity
- Proximal or distal fractures

Distal Tibial Fractures

- Reduction before reaming
- Distractor
- Fibula plate/nail
- Joy Stick
- Calcaneal Traction

Universal Distractor Reduction

Plate Fibula

Distal Tibial Joystick

Outcomes of IM Nailing

- 859 closed tibia fractures
- 92.5% union rate
- 18.5 weeks to union
- 1.9% infection rate
- 4.4% aseptic nonunion
- "Reamed intramedullary nailing will probably continue to be the best method of treating tibial diaphyseal fractures."

Plating of Tibial Fractures

3.5 mm or Narrow
 4.5mm DCP plate
 can be used for shaft
 fractures

 Newer periarticular plates available for metaphyseal fractures

Subcutaneous Tibial Plating

 Newer alternative is use of limited incisions and subcutaneous plating- requires indirect reduction of fracture and hybrid screw fixation options

Percutaneous Plate Fixation

 Newer percutaneous plating techniques using indirect reduction may be a more beneficial alternative

 Large prospective studies yet to be evaluated

Advantages of Plating

- Anatomic reduction usually obtained
- In low energy fractures
 - 97% G/E results reported
 - Ruedi Injury

Disadvantages of Plating

- Increased risk of infection and soft tissue problems, especially in high energy fractures
- Higher rate hardware failure than IM nail
- Delayed WB (load bearing)

Combination Reduction

External Fixation

- Generally reserved for DCO Provisional Stability of dislocations and periarticular fxs
- Primary used for DCO Provisional Stability
- Definitive Treatment with Fine Wire/Spatial Frames (Ilizarov)

Advantages of External Fixator

- Can be applied quickly in polytrauma patient
- Allows easy monitoring of soft tissues and compartments
- Modifiable
- No long term deep HW
- Evolution: More Commonly used for Temporary Damage Control

Bibliography

- Bonnevialle P et al. OTRC. 2010;96(1): 64-9.
- Engebretsen L et al. KSSTA 2009; 17(9):1013-26.
- Fanelli GC et al. Arthroscopy 2002;18:703–714.
- Harner CD et al. JBJS 2004; 86A;262-273.
- Kennedy JC. JBJS 1963; 45A:889-904.
- Liow RW et al. JBJS Br 2003:85(6):845-51.
- Meyers MH et al. JBJS 1971; 53A:16-29.
- Mills WJ et al. JOT. 2003;17(5):338-45.
- Mills WJ et al. J Trauma 2004;56(6):1261-5.
- Moore TM. CORR 1981; ;(156):128-40.
- Niall DM et al. JBJS Br 2005: 87(5):664-7.

Bibliography

- Ohkoshi Y et al. CORR 2002; ;(398):169-75.
- ☐ Robertson A et al. JBJS Br 2006; 88;706-11.
- □ Schenck RC et al. South Med J 1992; 85(3S): 61.
- ☐ Schenck RC et al. Arthroscopy 1999; 15(5):489-495.
- ☐ Shelbourne KD et al. Orthop Rev 1991;20:995-1004.
- ☐ Stannard JP et al. JBJS 2004 86:910-915, 2004.
- ☐ Szalay MJ et al. Injury. 1990;21(6):398-400.
- □ Templeman DC et al. JBJS 1989;71(9):1392-5.
- □ vanRaay JJ et al. AOTS 1991;110(2):75-7.
- ☐ Walling AK et al. JBJS 1982;64(9):1324-7.

Bibliography

- Rasmussen Acta Orthop Scand 1972; 43:566-572
- Rasmussen P, JBJS 55, 1973
- Schatzker, Clin Orthop, 1979
- Moore, Clin Orthop, 1981
- Lansinger JBJS 1986; 68A:13-19
- Jensen et al JBJS 1990; 72B:49-2
- Honkonen J Orthop Trauma 1995; 4:273-277
- Beris et al Bull Hosp Joint Dis 1996
- Koval, J Orthop Trauma, 1996
- Twaddle et al AAOS, 1997
- Hubbard et al. Amer J Ortho, 1999
- Lobenhoffer et al, JOT 13 1999
- Westmoreland et al J Ortho Trauma 2002
- Karunaker et al. J Ortho Trauma 2002

Recent Bibliography

- Gaston et al, JBJS 87B(9) 2005
- Barei et al, JBJS 88A(8) 2006
- Berkson and Virkus, JAAOS 14(1) 2006
- The COTS, JBJS 88A(12) 2006
- Barei et al, JOT 22(3) 2008
- Russell et al, JBJS 90(10) 2008
- Mahadeva et al, Arch Orthop Trauma Surg 128 2008
- Musahl et al, JBJS 91B(4) 2009
- Hall et al, JBJS 91A(Suppl 2) 2009
- Cullen et al, JOT 23(7) 2009
- Higgins et al, JOT 23(1) 2009
- Brunner et al, Injury 41 2010
- Lindeque and Baldini, Orthopaedics 33(1) 2010