Triangular Fibrocartilage Complex

Indications and Repair of Peripheral TFCC Tears

Matt Weichbrodt, DO

TE SECTION DE LA

No Disclosures

Center for Orthopedic Research and Education®

Objectives

Determine indications and treatment options for peripheral TFCC tears

What is the TFCC?

Triangular Fibrocartilage Complex (TFCC) is both a ligamentous and cartilaginous structure that suspends the distal radius and ulnar carpus from the distal ulna.

• It arises from the sigmoid notch of the radius and inserts onto the base of the ulnar styloid (Fovea).

Anatomy (Palmer '81)

- Dorsal and Volar Radioulnar Ligaments
- Ulnar Collateral Ligament
- Meniscus Homologue
- Articular Disk
- Extensor Carpi Ulnaris
- Ulnolunate/Ulnotriquetral ligaments
- Lunotriquetral Ligament

TFCC Vascular Anatomy

TFCC Functions

- Central cartilaginous surface (compressive zone)
- Rotational forearm stabilizer
- Suspension of ulnar carpus (tensile zone)
- Transmission of Axial load
 - 20% of wrist
 - 2.5mm ulnar + increases to 40%

Patient History: TFCC injury

- Typically skeletally mature active patient
- Report an acute rotational injury or ulnar load
 Often sports/work related
- Recurrent ulnar sided wrist pain/tenderness
- May describe a feeling of ulnar instability
 - Clicking/locking/popping
- Loss of strength may lead to difficulty with daily activities: twisting a jar lid or door knob, turning a screwdriver or steering wheel, lifting objects

Physical Examination

- Site of localized foveal tenderness (ballotable area between the triquetrum and ulnar styloid)
- ROM (painful forearm rotation)
- Pain at extremes of range of motion (passive ulnar deviation and radial deviation against resistance)
- Pinch/Grip strength decreased
- Pain with lift off test
- DRUJ Instability

Diagnostic Imaging

- Start with plain films
 - PA, lateral, oblique, pronated grip view
- CT Arthrography
- MRI ± Arthrogram
 - CTA and MRA meta-analysis found equivalent sensitivity/specificity (J. Wrist Surg. Treiser et al. 2018)
 - MRI/MRA meta-analysis for dx of TFCC tears (JBJS. Smith et al. 2012)
 - MRI sens:0.75 and spec:0.81
 - MRA sens:0.84 and spec:0.95

Ulnar deviation

Radial deviation

Ulnar Variance

Ulnar Variance: Does is matter?

- 73% of TFCC tears occur in ulnar neutral/positive
- Biomechanical studies have demonstrated that shortening the ulna by even 2.0 mm dramatically decreases the force transmitted to the ulna by the carpus

Wrist Arthrography

Peripheral TFCC Tear

Palmer Classification:TFCC Tears(JHS 1989)

- Traumatic (Class 1)
 - fall on outstretched extremity
 - hyper rotation of forearm
 - 4 injury patterns
- Degenerative (Class 2)
 - "Ulnar Impaction Syndrome" repetitive loading
 - 5 stages of injury

TFCC Injury: Class 1A

© The CORE Institute[®]. All rights reserved.

TFCC Injury: Class 1B

TFCC avulsion from distal ulna

*May be associated with a distal ulna fracture

TFCC Injury: Class 1C

Distal avulsion of TFCC from triquetrum (or lunate)

TFCC Injury: Class 1D

Avulsion of TFCC radial attachment ± sigmoid notch fracture

Treatment: Class 1B Injuries

- Begin with conservative care
 - immobilization, long arm cast or splint (Munster)
 - NSAIDS
 - steroid injections
- Surgical Indications
 - Failed conservative Tx
 - 3-4 months

Palmer 1B: Operative Management

Open vs Arthroscopic

Palmer Classification: TFCC Tears

Open Repair

Open TFCC Repair

Intraosseous wire/Suture Anchor

Palmer 1B: Open Repair

- Proponents: Able to achieve direct foveal repair of the TFCC
- Good Results with Open Repair
 - Nakamura et al. Tech Hand Up Ext. 2004.
 - Chou. Int Orthop. 2001
 - Cooney et al. JHS. 1994
- Complications
 - ECU tendonitis, Ulnar sensory neuritis/injury, Decrease ROM and Grip strength, DRUJ Instability, Progressive degenerative changes...

Why Arthroscopic Repair?

- Improved visualization: Direct assessment of cartilage, competency of TFCC, associated SL/LT injury, more precise suture ± implant placement
- Maintain dorsal capsular structures
- Decreased risk of injury to surrounding structures which some studies show improved functional outcome scores, range of motion, grip strength, and pain relief compared to traditional open techniques

Arthroscopic Technique

- Supine with armboard
- Regional Block
- Tower: 7-10lbs traction
 - Finger traps: Index/Middle
- 1.9/2.3/2.7 Scopes
 - Suture Shuttle device of choice (TFCC repair kit)

Arthroscopic Technique

- Portal Anatomy
 - Based on Extrinsic compartments
 - 1-2: radial cutaneous n.
 - 3-4
 - 4-5
 - •6R
 - 6U: ulnar cutaneous n.
 - DRUJ Portals

Wrist Arthroscopy

- Inflate with: 5-7ml
 - If TFCC tear: additional 4-7ml and may bulge at DRUJ
- 11 blade: 2mm incision
- 18g outflow at 6R
- Begin with a thorough diagnostic arthroscopy including midcarpal

Wrist Arthroscopy

- TFCC
 - Ulnar border over sigmoid notch: smooth and contiguous
 - Probe for tension: "trampoline" effect
- 2 normal perforation
 - Prestyloid recess
 - Pisotriquetral space

Wrist Arthroscopy

TFCC Repair Options Inside out Outside in All Inside

TFCC Repair Technique: Inside-Out

- Inside-out Technique (Dr. Gary Poehling: Arthroscopy 1996)
 - Scope 4-5
 - Touhy needle in 1-2
 - Advance through edge of TFCC and out skin palmar to ECU
 - Pulled back and advanced through more palmar of dorsal area of TFCC edge and out skin.
 - Small incision is made to ensure no entrapment of ulnar sensory n. and tied over ulnar wrist capsule
 - Beware of ECU tendonitis from suture knots

TFCC Repair Technique: Inside-Out

Hand Surgery 2004

TFCC Repair Technique: Inside-Out

С

Hand Surgery 2004

Arthroscopic TFCC Repair: Outside-In

- Outside-In Technique
 - Scope 3-4
 - Repair 4-5/6R
 - 2-3cm incision over ECU sheath (ulnar sensory n.)
 - Shuttle 2-0 PDS (outside in) with 20g spinal needle
 - 2-3 sutures placed over ulnar capsule
 - Mattress/Simple
 - Beware of chronic ECU tenosynovitis

TFCC Repair Technique: Outside-In

Hand Surgery 2004

Peripheral TFCC Tear

Arthroscopic Peripheral TFCC Repair

Arthroscopic Peripheral TFCC Repair

Peripheral TFCC Repair Video

Arthroscopic Peripheral TFCC Repairs

- Arthroscopic treatment of peripheral TFCC tears has gained favor as it improves visualization of repair and results suggest improved ROM, Grip strength, and less complications over open techniques
 - Anderson et al. JHS. 2008
 - Reiter et al. Arthroscopy. 2008.
 - Ruch and Papadonikolakis. Arthroscopy. 2003.
 - Haugstvedt et al. Scan. J Plast. Recons. Hand Surg. 1999.
 - Corso et al. Arthroscopy. 1997.
 - Trumble et al. Arthroscopy. 1996.

Arthroscopic vs Open TFCC repair?

- <u>DRUJ Instability</u>: Foveal TFCC tears
 - Biomechanical study of DRUJ stability is dependent on deep components of TFCC (Haugstved et al. JHS 2006)
 - Additional studies reporting poor outcomes with arthroscopic TFCC repair in setting of DRUJ instability
 - Estrella et al. Arthroscopy. 2007.
 - Tunnerhoff and Haussman. 2001.
 - Trumble et al. Arthroscopy. 1996.

Literature

- Arthroscopic Treatment of Peripheral Triangular Fibrocartilage Complex Tears with the Deep Fibers Intact. Ruch et al. JHS 2012.
 - Retrospective Case Series of 29 superficial peripheral TFCC tears repaired with outside in technique: 26 available for F/U at mean of 31 mo.
 - 22 pts daily vigorous activity (11 high-level athletes)
 - Mean time to surgery 12 mo
 - MRI: foveal intact, no abutment or degenerative changes
 - No DRUJ instability, degenerative changes or abutment
 - VAS, DASH, ROM, Grip strength, Return to work/sports

- VAS: improved from 5.4 to 0.9 (P .001)
 - Successful(84%), Unsure(4%), Unsuccessful(12%)
- DASH: improved from 38 to 9 (P.003)
- 88% would have the procedure again
- 7 of 11 athletes returned to similar level of play
 - At final F/U: 8 (31%) felt limited in sports/work/both (6 where competitive athletes).
- ROM: No measurable difference: unaffected side
- Complications: parethesia (2), ECU (1), Re-tear (1)
 - All resolved or repaired

Literature

- Clinical Comparison of Arthroscopic Versus Open Repair of Triangular Fibrocartilage Complex Tears. Anderson et al. JHS. 2008. (Mayo)
 - 76 pt (37 scope and 39 open peripheral TFCC repairs treated by 8 fellowship hand surgeons): 90% Power
 - All operated within 4 mo. after failing conservative care
 - Retrospective review and F/U exam/questionnaire
 - Wrist pain, Grip strength, DRUJ instability, VAS, ROM, MMWS, DASH, PRWE (patient reported wrist evaluation).

- No significant differences preop between groups
 - MMWS or Instability
- All improved postop however with no significant differences between the groups
 - VAS, DASH, MMWS, PRWE, Pain, Function/ROM
- Both groups experienced decreased ROM and Grip strength but less in arthroscopic group (no stat sig.)
- Increased postop hyperesthesia of ulnar sensory in open group (no stat sig.)
- No difference in reoperation for DRUJ instability(13)

- Clinical difference but not statistically significant:
 - Postop flex/ext arc (116°:scope vs 109°:open)
 - Incidence of nerve injury (8:scope vs 14:open)
 - ECU tendonitis (4:scope vs 10:open)

Arthroscopic vs Open TFCC repair?

- Argument is that arthroscopic repair is unable to properly debride foveal attachment to achieve the healing bed necessary for TFCC repair
- Iwasaki and Minami. JHS 2009
 - Showed creating osseous tunnel can enhance progressive adhesion of avulsed TFCC

Atzei Modification of Palmer 1B

- Foveal TFCC tear classification and treatment. (Atzei A. Hand Clinics. 2011)
 - Class1: Repairable distal tear
 - Class 2: Repairable complete tear
 - Class 3: Repairable proximal tear
 - Class 4: Non-repairable tear
 - Class 5: Arthritic DRUJ based on arthroscopy

50

Atzei et al

Atzei:EWAS treatment-oriented classification of TFCC peripheral Tears

		1	1	i	1
	Class 1: reparable distal tear	Class 2: reparable complete tear	Class 3: reparable proximal tear	Class 4: nonreparable tear	Class 5: arthritic DRUJ
Clinical DRUJ instability	None/slight	Mild/Severe		Severe	Mild/severe
Appearance of TFCC distal component (RC arthroscopy)	Torn	Torn	Intact	Torn	Variable
Status of TFCC proximal component (Hook test/DRUJ arthroscopy)	Intact	Torn	Torn	Torn	
Healing potential of TFCC tear's margins		Good	Good	Poor	
Status of DRUJ cartilage (DRUJ arthroscopy)	Good	Good	Good	Good	Poor
Treatment	REPAIR Suture (Ligament- to-capsule)	REPAIR Foveal refixation	4	RECONSTRUCTION Tendon graft	SALVAGE Arthroplasty or joint replacement

TFCC Tear with Foveal Disruption

Atzei et al

Literature

- Arthroscopically Assisted Repair of Triangular Fibrocartilage Complex Foveal Tears.
- Shinohara et al. JHS. 2013 (Japan)
 - Case Series 11pts with mean f/u 30 mo.
 - Mean time to operation 10 mo.
 - All with DRUJ instability: clicking, daily impairment, etc.
 - No ulnar positive/ulnar impaction
 - Hand20 questionnaire, Grip, ROM, DRUJ instability, MMWS (Mayo Modified Wrist Score)
 - Used a transosseous outside in arthroscopically assisted repair technique through a distal DRUJ portal

- Hand20: preop 29 and postop 6 (P.012)
- 7pt pain resolved and mild remained in 4 pt
- Grip strength improved from 84% preop to 98% of unaffected side postop (P .016)
- ROM: flex-ext arc increased from 93% to 100% and pro-sup arc 96% to 97% of unaffected side
- DRUJ instability: 9pt had none and 2 mild
- MMWS: improved from 70 to 94 (P.003)
 - 7 Excellent, 3 good, 1 fair

Literature

- Arthrosopic Foveal Repair of the Triangular Fibrocartilage Complex. Atzei et al. J Wrist Surg. 2015
 - Retrospective Review of 48pt after an all-inside arthroscopic foveal TFCC repair using a suture anchor
 - Immobilized forearm postop 4 weeks and resume heavy use at 3 months
 - Mean follow up: 33 months

Arthroscopic all-inside repair

Direct Foveal (DF) Portal

- Resolved DRUJ instability in 44 pt
- Significantly increased ROM, Grip, MMWS, DAS
 - Pain improved significantly in all but remained moderate in 4 and severe in 1.
 - 41 pt (85.5%) resumed previous work/sport activities (15 high level athletes)
 - Complications: 5 patients
 - Neuropraxia dorsal ulnar sensory: all recovered

Other Considerations

- <u>Ulnar Variance</u>: Role as predictor of outcome?
- Nakamura et al. Hand Clin. 2011
 - Arthroscopic transosseous repair was not indicated in pt with excessive ulnar positive variance/abutment
- Ruch and Papadonikolakis. Arthroscopy. 2008.
 - higher DASH with ulnar neutral/positive pts
- Trumble et al./Tunnerhoff and Haussmann/Imbriglia
 - Recommended joint leveling for TFCC tears with ulnar positive variance

The Take Away

- Symptomatic Superficial 1:B TFCC peripheral tears without instability
 - Arthroscopic TFCC Soft tissue to ulnar capsule
- Symptomatic 1:B TFCC foveal tears with instability
 - Arthroscopic transosseous repair
- Positive ulnar Variance/abutment
 - Consider joint leveling procedure
 - Tunnerhoff and Haussmann (2001)
 - Trumble et al (JHS '97)
 - Minami et al (JHS '98)

Future Research

- Better standardization of arthroscopic findings for TFCC peripheral tears and assessment of inter/intra-observer reliability
 - Comparative outcomes of open vs arthroscopic treatment based upon these specific classification
 - ±Ulnar abutment
 - ±DRUJ instability
 - ±Intrinsic ligament injuries
 - ±Distal radius fractures

Thank You

