Introduction to Point of Care Ultrasound (POCUS)

Adrijana Anderson, PA-C Mayo Clinic Arizona

Objectives

- Explain the indications for the use of bedside, point-ofcare ultrasound (POCUS).
- Describe the basics of ultrasound technology, and "knobology".
- Be able to perform basic cardiac, lung, and eFAST ultrasound exams.

Point-Of-Care Ultrasound (POCUS)

Why should I learn ultrasound?

- It will make you a better clinician
- It will improve your procedural skills
- You can be reimbursed for this!

Basics of Ultrasound

Principle of Ultrasound:

sound waves are emitted from the probe and reflect on objects depending on impedance.

- Returned <u>hyper</u>echoic signals appear white
- <u>An</u>echoic appears black (eg. fluid)
- \square Frequency \propto resolution

Basic "Knobology"

Transducers

Phased Array (low frequency) "Cardiac"

Curvilinear (low frequency) "Abdominal"

Indicator!

There are a variety of scanning modes used in point of care ultrasound. Here we will discuss **B-** or **brightness mode**, **M- mode** or **motion mode** and **D-** or **doppler mode**.

B-mode (also called **2D mode**) converts echo waveforms into a **256 shade** grayscale image. The shade of gray depends on the amplitude of the returning echo.

M-mode plots the motion of a structure of interest. The probe's **image plane** is plotted on a vertical axis and **time** is plotted on a horizontal axis.

Doppler mode can determine movement of reflected ultrasound waves toward or away from the probe. This can be represented by colour changes or graphical peaks.

Doppler flow- "BART" -Blue Away, Red Towards

Advantages of POCUS

- Repeatable as clinical status changes
- Portable
- Non-invasive
- Non-ionizing radiation
- Low cost
- Easy to learn

Disadvantages of POCUS

- Air/Gas
- Body Habitus
- Experience / operator dependent
 - This is <u>NOT</u> a formal echo or ultrasound evaluation

Indications for POCUS

- Hypotension
- Respiratory Distress
- Assessment of fluid status

Uses for Ultrasound

- Foreign body
- Cardiac standstill
- Appendicitis
- Fractures

DVT

•

•

Retinal Detach

- Pneumothorax
- CHF
- Optic nerve
- Vascular access
- Paracentesis
- Pyloric stenosis
- There are many!!
- Hemothorax
- Abscess
- Urinary retention
- Ovarian cyst
- Tendon rupture
- AAA
- Arthrocentesis
- Ectopics

- Hydronephrosis
- Baker's Cyst
- IUP
- Bowel Obstruction
- Hernia
- Ascites
- Cellulitis
- Joint effusion
- Thyroid

Our Focus

Cardiac Ultrasound

IVC/Fluid Assessment

- FAST (Focused Assessment Sonography in Trauma)
- Lung
- Vascular

Sonographic Assessment of Medical Emergencies

- 1. Use a structured approach
- 2. Perform quickly at the bedside
- 3. Limited and focused exam

Case #1

- 38 yo male was involved in a car accident.
- No seatbelt.
- Had a pulse in the ambulance, now has no pulse.

Case #1

Case #1

Cardiac Ultrasound

Goals of Cardiac Ultrasound

Is the heart strong or weak?
LV and RV size/systolic function

□ Is there fluid around the heart?

Pericardial effusion/cardiac tamponade

What is the fluid status of the patient?

Four Views of the Heart

- Subxiphoid/subcostal
- Parasternal Long
- Parasternal Short
- Apical (Four Chamber)

Subxiphoid View

Subxiphoid View

Parasternal Long View

Parasternal Long View

Parasternal Short View

Parasternal Short View

Apical (Four Chamber) View

Apical (Four Chamber) View

Evaluation of the IVC

Static Parameter for estimating P_{RA} ≈ CVP ≈ fluid status of patient

IVC Diameter (cm)	Collapse	RA Pressure (mmHg)	CVP	Fluid Status
<2	>50%	<10	0-10	"Dry"
>2	<50%	>10	10-20	"Full"

The "M Mode" can be used to measure IVC as well

Anything that increases the RA pressure can dilate the IVC → LV failure, RV failure, Pulmonary HTN, TR, Hypervolemia

Evaluation of the IVC

Sensitivity: 63% Specificity: 73%

"A small IVC is moderately predictive of fluid responsiveness, however a dilated IVC cannot rule out fluid responsiveness."

- 82 year old male presents to the ED with weakness
- <u>BP:</u> 84/70 <u>HR:</u> 104 <u>RR:</u> 24 <u>Temp:</u> 36.2 °C
- □ O2 sats 78% on RA, 91% on High Flow Oxygen.

Patient's BP: 86/68

After the ultrasound, patient was given a fluid bolus.

■ After 500cc of fluid:

- <u>BP:</u>100/70 <u>HR</u>: 98 <u>RR</u>:20 <u>Temp</u>: 38.2°C
- Pneumonia treatment was initiated.

Focused Assessment Sonography in Trauma (FAST)

- Quick and can be repeated
- Look for free intraperitoneal fluid

A negative FAST exam does <u>NOT</u> rule out throacoabdominal injury, free fluid or a pneumothorax!! It is just used for screening!!

FAST

Image Acquisition

- Low frequency probe, usually the curvilinear probe.
- Four views:
 - Pericardial
 - Hepatorenal
 - Splenorenal
 - Rectovesicular

FAST - Pericardial

FAST - Hepatorenal

Morison's pouch

FAST - Splenorenal

FAST - Rectovesicular

Lung Ultrasound

Can assess for:

- Pulmonary edema
- Consolidation/pneumonia
- Pleural effusions
- Pneumothorax

	CXR (sensitivity)	US (sensitivity)
Pulmonary edema	56.9%	85-92%
Pneumonia	38-64%	85-96%
Pneumothorax	39-50%	78-90%

In a study, lung ultrasound provided the correct diagnosis in **90.5% cases of acute respiratory failure.

BLUE Protocol

BLUE (Bedside Lung Ultrasound in Emergency) Protocol Exam Points:

- 1. 2nd intercostal space, mid-clavicular line
- 2. 5th IC space, anterior axillary line

- 3. Level of diaphragm, axillary line
- 4. Level of diaphragm, posterior axillar

Lung Ultrasound

Pleural Effusion

Lung Ultrasound

"B Lines" = Pulmonary Edema

Pneumothorax

- Midclavicular, longitudinal
- Find the pleura between two ribs
 - Lung sliding = normal (rules out pneumothorax)
 - No sliding = Pneumo
 - "Seashore" = Normal
 - Barcode = Pneumo

Ultrasound is actually more sensitive than CXR for finding a pneumothora

Normal Lung Sliding

Which side demonstrates a pneumothorax?

22yo female with history of asthma, collapsed in her front yard.

- Her neighbor witnessed the event and called 911, saying "I think she must've had an asthma attack, she's turning blue!"
- **Tachycardic, hypotensive, and cyanotic** in field.
- Intubated. Has a weak, fast pulse.

Does she have a pneumothorax??

Is it her heart??

Why is she hypotensive??

- Hepatorenal view
- Free fluid in Morison's Pouch
- Ruptured ectopic pregnancy

Reminder!

If you have a patient with unexplained **hypotension**, consider:

- 1. Is it the pump??
- 2. Is is the pipes?? (hypovolemia, bleeding)

How can I use this in the office?

Should I do an I&D or apply heat and give antibiotics?

Cellulitis vs. Abscess?

Cellulitis

Abscess

42 yo female with nausea and RUQ pain

Central Line Placement

How am I going to learn to ultrasound?!?

Keep it simple!

Typical Learning Curve

<u>Step #1:</u> Snow storm

Typical Learning Curve

<u>Step #2:</u> "I see gallstones!!"

Typical Learning Curve

<u>Step #3:</u>

"This is exciting! What else can I do with this?!"

Lessons for Practice

- PRACTICE ultrasound as much as possible!
- Don't interpret something you are not sure of.
- The more you scan, the better you will get! ☺

Questions??

Anderson.Adrijana@mayo.edu

References

- Jensen MB, Sloth E, Larsen KM, Schmidt MB. Transthoracic echocardiography for cardiopulmonary monitoring in intensive care. *Eur J Anesthesiology*. 2004;21:7007.
- Lamia B, Ochagavia A, Monnet X, et al. Echocardiographic predicition of volume responsiveness in critically ill patients with spontaneously breathing activity. *Intensive Care Med*. 2007;33:1125-32.
- Critical Care Ultrasound Course Handout. SCCM Adult Ultrasound Course. 2014.
- Lichtenstein DA, Mezière GA. Relevance of Lung Ultrasound in the Diagnosis of Acute Respiratory Failure. Chest. 2008;134(1):117-125. doi:10.1378/chest.07-2800.
- Alrajab S, Yousef AM, Akkus N, Caldito G. Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of theliterature and metaanalysis. Critical Care 2013, 17:R208.
- Long E, Oakly E, Duke T, Babl FE. Does Respiratory Variation in Inferior Vena Cava Diameter Predict Fluid Responsiveness: A Systemic Review and Meta-Analysis. SHOCK 2017; 47(5):550-559.
- With special thanks to Dr. Joseph Wood, Hannelisa Callisen, PA-C and Andrew Walker, MMS, PA-C.

