Overview of immunotherapy toxicity in oncology: A focus on CAR-T and checkpoint inhibitors

Kevin Michael Ohara PA Memorial Sloan Kettering Cancer Center Adjunct Professor, Pace University New York, New York oharak@mskcc.org

• I have no financial or other bias inducing disclosures

Objectives

Describe CART and Checkpoint inhibitor MOA
List common toxicities
Develop a basic understanding of how to diagnose

and treat these toxicities

Checkpoint Inhibitors

Blockade of PD-1 or CTLA-4 Signaling in Tumor Immunotherapy

Ribas A. N Engl J Med 2012;366:2517-2519.

COMMON APPROVED CHECKPOINT INHIBITORS

Table 1. Approved immune checkpoint inhibitors and indications					
CTLA-4	Ipilimumab (Yervoy)	Melanoma			
PD-L1	Pembrolizumab (Keytruda), nivolumab (Optivo)	NSCLC, small-cell lung cancer, head and neck carcinoma, RCC, Hodgkin lymphoma, cervical carcinoma, PMBCL, urothelial carcinoma, hepatocellular carcinoma, gastric cancer, MSI-H or dMMR solid tumor			
PD1	Atezolizumab (Tecentriq), durvalumab (Imfinzi), avelumab (Bavencio)	Urothelial cancer, NLCLC, Merckel cell carcinoma			
CTLA-4 + PD-L1	Ipilimumab + nivolumab	Metastatic melanoma, RCC, colorectal cancer (MSI-H or dMMR)			

CTLA-4, cytotoxic T-lymphocyte-associated antigen-4; dMMR, deficient mismatch repair; MSI-H, microsatellite instability high; NSCLC, nonsmall-cell lung cancer; PD-L-1, programmed cell death-ligand 1; PMBCL, primary mediastinal large B cell lymphoma; RCC, renal-cell carcinoma.

Claire Perrinjaqueta, Nicolas Desbailletsb, and Andreas F. Hottingera. Neurotoxicity associated with cancer immunotherapy: immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy Curr Opin Neurol 2019, 32:500 – 510

Immune Checkpoint Inhibitors FDA Approved in Multiple Cancers (May 2019)

Head and neck squamous cell carcinoma Hodgkin lymphoma Breast Cancer Hepatocellular carcinoma Gastric/GEJ cancer

Melanoma Merkel cell carcinoma Cutaneous squamous cell carcinoma

> MMR-deficient solid tumors

Primary mediastinal B-cell lymphoma

NSCLC Small cell lung cancer

Renal cell carcinoma Urothelial carcinoma

MSI-high colorectal cancer

Cervical cancer

- ICIs include atezolizumab, avelumab, durvalumab, ipilimumab, cemiplimab-rwlc, nivolumab, pembrolizumab
 - Approved as monotherapy, in combination with other ICIs, and in combination with chemotherapy
 - ICIs historically used in later-line metastatic disease, but moving into earlier lines of therapy and earlier stages of disease

Toxicities Associated with Checkpoint Inhibitors

BLOOD Haemolytic anaemia Thrombocytopaenia Neutropenia Haemophilia

CARDIOVASCULAR **Myocarditis** Pericarditis Vasculitis

ENDOCRINE Hyper or hypothyroidism Hypophysitis Hypoadrenalism Type 1 diabetes

EYE Uveitis Conjunctivitis Scleritis, episcleritis Blepharitis Retinitis

GASTROINTESTINAL Colitis lleitis Pancreatitis Gastritis

LIVER Hepatitis

MUSCULOSKELETAL Dermatomyositis Arthritis

NEUROLOGICAL Neuropathy Guillain Barre Meningitis Encephalitis Myasthenia

RENAL Nephritis

RESPIRATORY Pneumonitis Pleuritis Sarcoid-like granulomatosis

SKIN Rash Pruritis Psoriasis Vitiligo DRESS Stevens Johnson

Checkpoint Inhibitor Toxicities

Most Common

- Dermatologic
 Vitiligo
 Pruritis
 Rash/Dermatitis
 Gastrointestinal
 Colitis
 - •Hepatitis
- •Endocrine

Less Common, Serious •Pulmonary •Pneumonitis •Cardiac •Myocarditis •Neurologic •Aseptic meningitis/encephalitis •Myasthenia gravis •Guillain-Barre •Auto-immune neuropathies

When do irAEs occur?

Any grade, n = 474

Weber et al. Journal of Clin Oncol 2016

Endocrine Related Adverse Events

- The thyroid, adrenal, and pituitary glands are the organs primarily impacted
- TSH/T4 monitoring
- More common w/ ipilimumab

Hypophysitis

Chang, Checkpoint inhibitor Associated Hypophysitis. JGIM 2018 Jun 10;36

Neurologic toxicities

- Polyneuropathy
- Guillen barre syndrome
- Myasthenia Gravis
- Myositis
- Encephalitis
- Meningitis
- Transverse Myelitis

VOLUME 36 · NUMBER 17 · JUNE 10, 2018

JOURNAL OF CLINICAL ONCOLOGY

ASCO SPECIAL ARTICLE

Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline

Julie R. Brahmer, Christina Lacchetti, Bryan J. Schneider, Michael B. Atkins, Kelly J. Brassil, Jeffrey M. Caterino,

Toxicities - Management

- Evaluation and Management
 - Site specific
 - Steroids initial Tx for most toxicities
 - If unresponsive, Tx may include
 - MMF
 - Azathioprine
 - Cyclosporine
 - Infliximib
 - IVIG/Plasmapheresis

Case study 1

- A 56-year-old woman with metastatic NSCLC comes to ED with non bloody diarrhea approximately 2 liters per day x 4 days. Generalized abdominal cramping rated 3/10.
- PMHx: HTN, NSCLC
- MEDS: Amlodipine, Cycle 3 (pembrolizumab, pemetrexed and carboplatin)
- 98/68 mmhg, 110 hr, 20 RR, 37.8 temp
- CT A/P w, w/o consistent with colitis

CBC shows mild stable anemia and treatment related neutropenia

- CMP shows hypokalemia at 2.6, no hepatitis
- ESR, CRP elevated.
- GI Pathogen and C Difficile PCR studies negative
- GI consult favors irAE from pembro, also consider infectious, not recommending endoscopy given neutropenia

• Start methylprednisolone 1.5mg/kg

- Anti motility agents
- Potassium repletion IV
- Fluid resuscitation
- CMV PCR blood?
- Consider cycle 4

Chimeric Antigen Receptor (CAR) T cell

CAR T Cells: Mechanism of Action

FDA-Approved CAR T-Cell Therapies

Therapy	Target	Indications
		Patients aged up to 25 yrs with B-cell precursor ALL that is refractory or in second or later relapse
Tisagenlecleucel	CD19	 Adults with R/R large B-cell lymphoma after ≥ 2 lines of systemic therapy, including: DLBCL NOS DLBCL arising from follicular lymphoma High-grade B-cell lymphoma
Axicabtagene ciloleucel	CD19	 Adults with R/R large B-cell lymphoma after ≥ 2 lines of systemic therapy, including: DLBCL NOS DLBCL arising from follicular lymphoma Primary mediastinal large B-cell lymphoma High-grade B-cell lymphoma

Slide credit: clinicaloption

Acute CAR-T Toxicity

- Cytokine release syndrome
- Neurotoxicity (immune effector cell-associated neurologic syndrome)
- Hypersensitivity reaction
- Tumor lysis syndrome

Frequency of CRS and Neurotoxicity With FDA-Approved CAR T-Cell Therapies

Parameter	Axicabtagene Ciloleucel ^[1]	Tisagenlee	cleucel ^[2,3]	
Setting	DLBCL	DLBCL	B-ALL	
Trial	ZUMA-1	JULIET	ELIANA	
Toxicity grading criteria	Lee 2014	Penn Grading Scale	Penn Grading Scale	
Any-grade CRS, %	93	58	77	
Grade ≥ 3 CRS, %	13	22	47	
Any-grade neurotoxicity, %	64	21	40	
Grade ≥ 3 neurotoxicity, %	28	12	13	
Tocilizumab use, % Neelapu. NEJM. 2017;377:2531. 2. Schuster.	43 NEJM. 2019;380:45. 3. Maude. NEJM. 2018	14	48 Slide credit: clinicaloptions	

Time Course of Toxicities Associated With FDA-Approved CAR T-Cell Therapies

	CR	S	Neurologic AEs		
Number of Days – (Range)	Median Time to Onset	Median Duration	Median Time to Onset	Median Duration*	
Axicabtagene ciloleucel ^[1]	2 (1-12)	7 (2-58)	4 (1-43)	17	
Tisagenlecleucel ^[2]	3 (1-51)	8 (1-36)	6 (1-359)	ALL: 6 DLBCL: 14	

- CRS: characterized by fever at the onset; symptoms can be progressive and, in addition to fever, may include capillary leak/hypoxia, end organ dysfunction, and hypotension
- ICANS: toxic encephalopathy with symptoms of mild headaches, confusion, and delirium; expressive aphasia; occasional seizures; and rarely, cerebral edema; can occur in the presence or absence of systemic CRS

Managing Long-term Toxicities

- Consult institutional guidelines for management of the following toxicities and contact CAR T-cell treatment center for special management questions
- B-cell aplasia/hypogammaglobulinemia
 - Occurred in ~ 15% of adults with R/R large B-cell lymphoma treated with axicabtagene ciloleucel or tisagenlecleucel and in 43% of pediatric/young adult R/R B-cell ALL treated with tisagenlecleucel in pivotal trials; immunoglobulin levels should be monitored following therapy
- Cytopenias
 - Grade ≥ 3 cytopenias unresolved by Day 30 post treatment occur in a significant proportion of patients; blood counts should be monitored following therapy
- Infections
 - Occurred in 38% to 55% of patients treated with axicabtagene ciloleucel or tisagenlecleucel in pivotal trials

CRS Toxicities by Organ System

Neurologic

- > Headaches > Tremor
- > Delirium
- > Aphasia
- > Apraxia
- > Myoclonus
 - Facial Nerve palsy
 Seizures

> Dysmetria

- > Ataxia
- > Hallucinations

Hepatic

> Transaminitis > Hyperbilirubinemia

Hematologic

- Anemia
 Thrombocytopenia
 Neutropenia
 Febrile Neutropenia
 Lymphooenia
 B-Cell Aplasia
 Prolonged Prothrombin time
- > Prolonged Activated Partial Thromboplastic time

©2016 by American Society of Hematology

Cardiovascular

- > Tachycardia
- > Widened pulse pressure
- > Hypotension
- > Arrhythmias
- Decreased left ventricular ejection fracture
- > Troponinemia
- > QY prolongation
- Pulmonary
- > Tachypnea > Hypoxia
- Gastrointestinal
- Nausea > Diarrhea
 Emesis
- Musculoskeletal
- Myalgias > Weakness
 Elevated creatine kinase

Constitutional

- > Fevers
- > Rigors
- Malaise
- > Fatigue
- Anorexia
- > Aethralgais

Renal

- > Acute kidney injury
- > Hyponatremia
- > Hypokalemia
- > Hypophosphatemia
- > Tumor lysis syndrome

ASTCT Guidelines for Grading of Cytokine Release Syndrome

Parameter	Grade 1	Grade 2	Grade 3	Grade 4
Fever	Temp ≥ 38°C	Temp ≥ 38°C	Temp ≥ 38°C	Temp ≥ 38°C
with				
Hypotensio n	None	Not requiring vasopressors	Requiring a vasopressor with or without vasopressin	Requiring multiple vasopressors (excluding vasopressin)
and/or				
Hypoxia	None	Requiring low- flow nasal cannula or blow- by	Requiring high-flow nasal cannula, facemask, nonrebreather mask, or Venturi mask	Requiring positive pressure (eg, CPAP, BiPAP, intubation, and mechanical ventilation)

General Considerations for CRS Management

- Management of CRS is based on clinical parameters, not laboratory values
 - Ferritin, CRP, serum cytokines should only be used to support the diagnosis
- CRS is managed with high level of clinical surveillance, fluids, and vasopressors
 - CRS requires continuous monitoring
- The IL-6 receptor antibody tocilizumab is indicated for 1L treatment of CRS
 - Not currently recommended for prophylactic use as impact on T-cell expansion and persistence is not known. This is currently being investigated
- 2L treatment for CRS varies by protocol and / or institutional guidelines
 - Steroids are effective for treating CRS; however, they are lymphotoxic
 - Other cytokine-modulating agents are currently being investigated. Examples include siltuximab, anakinra, etc

Principles of Toxicity Management

- Appropriate screening per institutional standards
- Baseline labs
 - CRP, ferritin
 - CBC, CMP, coagulopathy
 - Tumor lysis syndrome labs
- Consider antiepileptic drugs
- Consider bacterial/fungal/viral prophylaxis per institutional standards

- Preinfusion/LD chemo
- Monitor baseline labs
- Daily assessments for 7-10 days
 - Fevers? Hypotension? Hypoxia?
 - Mental status
- Key acute toxicities: cytokine-release syndrome (CRS), immune effector cell—associated neurotoxicity syndrome (ICANS)

Tocilizimuab MOA

HLH Pathogenesis

HLH Laboratory Abnormalities

- Elevated ferritin
 - Likely secreted by activated macrophages
- Elevated triglycerides
 - Increased levels of TNF- α suppress activity of lipoprotein lipase
- Elevated LDH
- Depressed fibrinogen
 - Increased levels of plasminogen activator secreted by activated macrophages
- Impaired NK-cell activity
- Elevated soluble IL-2 receptor (sCD25)
- Transaminitis

Recommendations for Management of CAR-Related HLH or MAS per CARTOX Working Group

Differential Diagnosis for ICANS

- Electrolyte abnormalities
- Infection/sepsis
- Cytotoxic drugs
- Anti seizure drugs
- Hepatic failure
- Delirium
- Progression of disease

Encephalopathy Assessment Tools for Grading of ICANS

ICE					
Orientation:	Orientation to year, month, city, hospital	4 points			
Naming:	Ability to name 3 objects (eg, point to clock, pen, button)	3 points			
Following Commands:	Ability to follow simple commands (eg, "Show me 2 fingers" or "Close your eyes and stick out your tongue")	1 point			
Writing:	Ability to write a standard sentence (eg, "Our national bird is the bald eagle")	1 point			
Attention:	Ability to count backwards from 100 by 10	1 point			

Historical Grading Systems of Neurologic Toxicity

- CTCAE grading may not adequately quantify the acute neurologic deficits unique to CAR T therapies
- CARTOX Working Group has proposed the following grading scale for CAR-related encephalopathy syndrome (CRES):

Symptom / Sign	Grade 1	Grade 2	Grade 3	Grade 4
Neurological assessment score (see below)	Mild (7-9)	Moderate (3-6)	Severe (0-2)	Critical / obtunded
Raised intracranial pressure			Stage 1 or 2 papilledema ^a ; or CSF opening pressure <20 mm Hg	Stage 3, 4, or 5 papilledema; CSF opening pressure ≥20 mm Hg; or cerebral edema
Seizures or motor weakness			Partial seizure; non-convulsive seizures on EEG responding to benzodiazepine	Generalized seizures; convulsive or non-convulsive status epilepticus; new motor weakness

CARTOX 10-point neurological assessment

(Assign 1 point for each task performed correctly; score of 10 = normal)

• Orientation to year, month, city, hospital, president of the United States: 5 points

• Name 3 objects (point to clock, pen, button): 3 points

• Ability to write a standard sentence (eg, Our national bird is the bald eagle): 1 point

• Count backwards from 100 by 10: 1 point

Principles of Toxicity Management by Grade

Grade	CRS	Neurotoxicity	CRS + Neurotoxicity
1	Supportive care	Supportive care	Supportive care
2	Tocilizumab	Steroids (dexamethasone or methylprednisolone)	Tocilizumab + steroids (dexamethasone)
3	Tocilizumab	Steroids (dexamethasone)	Tocilizumab + steroids (dexamethasone)
4	Tocilizumab + high-dose steroids ICU/critical care	High-dose steroids (methylprednisolone) ICU/critical care	Tocilizumab + high-dose steroids (methylprednisolone) ICU/critical care

- Always rule out/treat alternative causes
- If tocilizumab refractory, consider corticosteroids
- Patients with neurotoxicity should receive AEDs and appropriate CNS imaging, EEG monitoring
- Steroid dosing for neurotoxicity may vary between products

Slide credit: clinicalopt

 Patients on steroids should receive appropriate fungal prophylaxis

Treatment CRS, ICANS

- Tocilizumab
- Steroids
- Anakinra
- Siltuximab
- Therapeutic LP

Tocilizumab/Steroid Use Did Not Impact Responses But Was Associated With Higher CAR T Cell Levels

	Tocilizumab			Steroids		
	Without n = 58	With n = 43	<i>P</i> Value	Without n = 74	With n = 27	P Value
ORR, n (%)	47 (81.0)	36 (83.7)	.8	62 (83.8)	21 (77.8)	.56
CR, n (%)	33 (56.9)	22 (51.2)	.69	40 (54.1)	15 (55.6)	1
Ongoing, n (%)	28 (48.3)	16 (37.2)	.31	33 (44.6)	11 (40.7)	.82
Median peak CAR levels, cells/µL (range)	26.52 (1.25-1226.36)	61.06 (0.84-1513.69)	.0011	32.2 (1.25-1226.36)	49.69 (0.84-1513.69)	.0618
Median CAR AUC, cells/µL days (range)	289.49 (16.82- 14329.29)	743.85 (5.09- 11506.59)	.0022	407.53 (16.82- 14329.29)	724.98 (5.09- 11506.59)	.0967

• Greater CAR T cell levels were observed in patients requiring AE management with tocilizumab and/or steroids

• This is consistent with reports showing CAR T cell expansion associated with grade ≥3 NE¹

1. Locke FL, Neelapu S, et al. Blood. 2016;128:LBA-6.

Lugano 2017, slides courtesy of S. Neelapu

Question One

- 56 y/o F receiving pembrolizumab for metastatic non-small cell lung cancer presents with 1 week of lower abdominal pain and approximately 3 liters of diarrhea a day. The work up suggests an immune-related adverse events (irAEs) of colitis. Which of the following medications would be indicated at this time?
- A. Methylprednisolone
- B. Tocilizumab
- C. Rituximab
- D. Mesalamine

Question Two

- Which of the following should be suspected in a patient receiving Ipilimumab who presents with headache, profound systemic weakness, and polyuria?
- A. Myasthenia Gravis
- B. Nephrogenic diabetes insipidus
- C. Pituitary Inflammation or Hypophysitis
- D. Multiple sclerosis

Question Three

- A 55-year-old M with DLBCL s/p Axicabtagene ciloleucel 6 days ago. Today, he is aphasic, agitated, and delusional. His CARTOX-10 score = 2 (hospital, city). Unable to name objects or write a sentence. He received tocilizumab on day 2 for Grade 2 CRS (hypotension, Grade 3 transaminitis, high fevers), which is now resolved. Vitals: BP 125/73, HR 80, temp 99.1°F. Which of the following is the best treatment for his neurologic toxicity?
- A. 2nd dose Tocilizumab
- B. Anakinra
- C. Siltuximab
- D. Dexamethasone

Citations

- Sattva S. Neelapu, Sudhakar Tummala, Partow Kebriaei, William Wierda, Cristina Gutierrez, Frederick L. Locke, Krishna V. Komanduri, Yi Lin, Nitin Jain, Naval Daver, Jason Westin, Alison M. Gulbis, Monica E. Loghin, John F. de Groot, Sherry Adkins, Suzanne E. Davis, Katayoun Rezvani, Patrick Hwu, Elizabeth J. Shpall. Chimeric antigen receptor T-cell therapy assessment and management of toxicities. Nature Reviews Clinical Oncology, 2017; DOI: 10.1038/nrclinonc.2017.148
- Zhitao Ying, Xue F. Huang, Xiaoyu Xiang, Yanling Liu, Xi Kang, Yuqin Song, Xiaokai Guo, Hanzhi Liu, Ning Ding, Tingting Zhang, Panpan Duan, Yufu Lin, Wen Zheng, Xiaopei Wang, Ningjing Lin, Meifeng Tu, Yan Xie, Chen Zhang, Weiping Liu, Lijuan Deng, Shunyu Gao, Lingyan Ping, Xuejuan Wang, Nina Zhou, Junqing Zhang, Yulong Wang, Songfeng Lin, Mierzhati Mamuti, Xueyun Yu, Lizhu Fang, Shuai Wang, Haifeng Song, Guan Wang, Lindsey Jones, Jun Zhu, Si-Yi Chen. A safe and potent anti-CD19 CAR T cell therapy. Nature Medicine, 2019; DOI: 10.1038/s41591-019-0421-7
- Drokow EK, Ahmed HAW, Amponsem-Boateng C, Et al. Survival outcomes and efficacy of autologous CD19 chimeric antigen receptor-T cell therapy in the patient with diagnosed hematological malignancies: a systematic review and meta-analysis. Ther Clin Risk Manag. 2019 May 6;15:637-646. doi: 10.2147/TCRM.S203822. eCollection 2019.
- Neelapu SS, Locke FL, Bartlett NL, Et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma.N Engl J Med. 2017 Dec 28;377(26):2531-2544. doi: 10.1056/NEJMoa1707447. Epub 2017 Dec 10.
- Schuster SJ, Bishop MR, Tam CS, Et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. <u>N Engl J</u> <u>Med.</u> 2019 Jan 3;380(1):45-56. doi: 10.1056/NEJMoa1804980. Epub 2018 Dec 1.
- Pettit D, Zeeshan A, Smith J, Et al. CAR-T Cells: a Systematic Review and Mixed Methods Analysis of the Clinical Trial landscape. Molecular Therapy Vol. 26 No. 2 feb 2018
- Julie R. Brahmer, Christina Lacchetti, Bryan J. Schneider, Et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 36:1714-1768.

- Kevin Michael Ohara PA
- Memorial Sloan Kettering Cancer Center
 - Adjunct Professor, Pace University
 - New York, New York
 - oharak@mskcc.org