Caring for the Bariatric Surgery Patient in the Primary Care Setting

Karli Burridge, PA-C, MMS, FOMA Director of Medical Weight Management LifeWeigh Bariatrics and Wellness Centers, Downers Grove IL

obesitymedicine.org

CLINICAL LEADERS IN OBESITY MEDICINE®

• Nothing to Disclose

Objectives

- Describe the differences and mechanisms of action of common metabolic and bariatric surgeries (MBS) in the treatment of obesity
- Identify acute and long-term complications
- Manage the treatment of metabolic diseases in the perioperative period
- Implement proper vitamin and mineral supplementation and monitor levels post-MBS
- Manage medical complications following MBS

Most Common Metabolic and Bariatric Surgery Procedures

obesitymedicine.org

CLINICAL LEADERS IN OBESITY MEDICINE®

Who is a Candidate for MBS?

- BMI ≥35 with at least one obesity-related complication
- BMI ≥40 regardless of obesity-related complications

Sleeve Gastrectomy

- 75–80% of greater curvature of stomach is removed
- Removes majority of ghrelin producing cells, reducing hunger
- Most common bariatric procedure

Roux-en-Y Gastric Bypass

- Creation of a small gastric pouch
- Stomach and duodenum bypassed
- Jejunum attached to new pouch Jejunum attached distally
- Second most common procedure
- Restrictive and malabsorptive
- Favorable changes in gut hormones affecting appetite and glucose metabolism

Laparoscopic Adjustable Gastric Banding (LABG)

- Silicone band placed around top of stomach, creating a small gastric pouch
- Band is adjusted using saline injected through port under patient's skin
- Reduced popularity due to long-term complications
- Primarily restrictive

CCF

Duodenal Switch

- First step: create small tubular stomach
- Second step: bypass 3/4 small intestines
- Highest rate malabsorption and complications, most weight loss and resolution of obesity-related complications
- Restrictive, malabsorptive, hormonal

Organ	Nutrients absorbed
Stomach	Water, alcohol
Duodenum	Fatty acids, amino acids, minerals (calcium, iron), some vitamins
Jejunum	Simple sugars, fatty acids, proteins, mineral, vitamins
lleum	Bile acids, bile salts, some vitamins, some minerals
Large intestines	Water, sodium chloride, potassium, intestinally derived vitamin K

Metabolic and Bariatric Surgical Procedures

					aal						
	Pros	Pros Cons Expected loss in percent two years		Optimally suited for patients with:							
Roux-en-Y gastric bypass	Greater improvement in metabolic disease	Increased risk of malabsorptive complications over sleeve	60–75%	Higher BMI, GERD, type 2 DM	Largest data set, more technically challenging than LAGB, VSG						
Vertical sleeve gastrectomy	Improves metabolic disease; maintains small intestinal anatomy; micronutrient deficiencies infrequent	No long-term data	50–70% (*three year data)	Metabolic disease	Can be used as the first step of staged approach; most common based on 2014 data						
Laparoscopic adjustable gastric banding	Least invasive; removable	25–40% Five-year removal rate internationally	30–50%	Lower BMI; no metabolic disease	Any metabolic benefits achieved are dependent on weight loss						
Biliopancreatic diversion with duodenal switch	Greatest amount of weight loss and resolution of metabolic disease	Increased risk of macro- and micronutrient deficiencies over bypass	70–80%	Higher BMI, type 2 DM	Most technically challenging						

 Obesity
 Medicine Association

Condition	Percent reduced or resolved	Percent resolved
Type 2 diabetes	86	76.8
Hypertension	78.5	61.7
Obstructive sleep apnea	85.7	83.6
Hyperlipidemia	78.5	61.7

https://asmbs.org/app/uploads/2014/05/Metabolic+Bariatric-Surgery.pdf Accessed and adapted 11/8/2019.

Impact on Morbidity and Mortality

- 60% reduction in mortality from cancer, with the largest reductions seen in breast and colon cancers
- 56% reduction in mortality from coronary artery disease
- 92% reduction in mortality from type 2 diabetes
- 40% overall reduction in mortality in gastric bypass patients
- Overall mortality rate from MBS is about (0.1%)
 - Less than gallbladder (0.7%)

13

- Less than hip replacement (0.93%) surgery
- Overall likelihood of major complications is about 4.3%
- Clinical evidence shows risks of morbid obesity outweigh risks of metabolic and bariatric surgery
- Studies show metabolic and bariatric surgery increases life span

Hormone	LAGB	SG	DS		
Ghrelin	↑↓ ↔	Ļ	↑↓ ↔	↑ ↓ ↔	
GLP-1		1	11	11	
ΡΥΥ		1	11	11	
				So Obesit	

Complications

obesitymedicine.org

CLINICAL LEADERS IN OBESITY MEDICINE®

Acute Complications

- Dehydration
- Intra-abdominal bleeding
- Leaks and sepsis
- Obstruction
- Pulmonary embolism
- Vomiting with or without abdominal pain
- Abdominal compartment
 syndrome

16 Adapted from Clinical Pearls for Emergency Care of the Bariatric Surgery Patient © 2010 American Society for Metabolic and Bariatric Surgery

Emergency Presentations

- 1. Unstable vital signs: fever over 101 degrees Fahrenheit
 - Hypotension
 - Tachycardia (≥120 bpm for ≥4 hours)
 - Нурохіа
 - Decreased urine output
- 2. Bright red blood by rectum or mouth, melena
- 3. Abdominal pain > 4 hours
- 4. Nausea/vomiting >4 hours
- 5. Vomiting with or without abdominal pain

Immediate surgical consult, even if imaging is negative

17 Adapted from Clinical Pearls for Emergency Care of the Bariatric Surgery Patient © 2010 American Society for Metabolic and Bariatric Surgery

Most Common Long-Term Complications of Sleeve Gastrectomy

- Weight regain or lack of long-term weight loss
- Sleeve dilation
- Worsening GERD or de novo GERD
- Luminal stenosis/strictures
- Alkaline reflux gastritis

- Calcium deficiency
- Secondary hyperparathyroidism
- Iron deficiency
- Anemia (related to mineral and nutrition deficiencies)
- B12 and B1 deficiency (IF)

- Weight regain
- Pouch/anastomotic dilation
- Gastro-gastric fistula
- Anastomotic/marginal ulcers
- Esophageal dilation
- Dumping syndrome with reactive hypoglycemia
- Small bowel obstruction caused by <u>internal hernias</u> or adhesions

- Protein malnutrition
- Nutritional and mineral deficiencies
- Osteoporosis (often caused by calcium deficiency and chronically elevated parathyroid hormone levels)

- No weight loss or weight regain
- Band slippage, erosion, ulceration, port infection
- Esophageal dilation
- GERD
- Food intolerance
- Rare nutrient deficiencies if persistent vomiting or marked and sustained decrease in nutritional intake
- Potential need for removal, revision, or conversion to another procedure

Most Common Long-Term Complications of DS

 Similar to RYGB, but <u>much</u> higher risk of protein and vitamin/mineral deficiencies

Common Micronutrient Deficiencies

	Vitamins						Minerals			
	А	B1	B9	B12	D*	Е	K	Ca	Fe	Zn/Cu
RNY		Х	Х	Х	Х			Х	Х	
Sleeve		Х	Х	Х	Х				Х	
LAGB		Х			Х					
BPD	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

*Vitamin D deficiency is seen in a significant number of patients with obesity at baseline. However, due to malabsorption, the risk is further increased post-operatively.

Obesity Algorithm[®]; © 2019 Obesity Medicine Association

Managing Metabolic Conditions in the Perioperative Period

obesitymedicine.org

CLINICAL LEADERS IN OBESITY MEDICINE®

Preoperative Evaluation

Î.Y.

Routine labs: CBC, CMP, lipid profile, UA, PT/INR

Nutrient screening: iron studies (iron, TIBC, ferritin), B12, folic acid, 25hydroxy vitamin D (vitamin A and E, zinc, copper for RYGB, DS)

GI evaluation: H. pylori, EGD as indicated

Cardiopulmonary evaluation: EKG, CXR, echo (if needed)

Preoperative Evaluation (cont.)

- Endocrine evaluation: HbA1c, thyroid panel, possible testosterone, DHEAS, Cushings?
- Clinical nutrition evaluation by RD
- Psychosocial evaluation
- Optimize glycemic control: 6.5–7.0%

- Pregnancy counseling: avoid pregnancy 12–18 months post-op; increased fertility after surgery
- Smoking cessation counseling: tobacco free over six weeks pre-op
- Verify cancer screening

Post-Operative Management of Type 2 Diabetes

- Close glucose monitoring is crucial, especially if on insulin
- Continued regular monitoring
 of HbA1c long-term
- RYGB:
 - 2 years: 75% remission
 - 6 years: 62% remission
 - 12 years: 51% remission
- LAGB: LABS-2 study: seven years—20% remission

26

Post-Operative Management of Type 2 Diabetes

- Dramatic improvements in glucose homeostasis both dependent and independent of weight reduction (especially after RYGB)
- Oral insulin secretagogues (sulfonylureas and meglitinides): discontinue at the time of surgery due to risk of hypoglycemia
- **Insulin:** reduced and adjusted during hospital stay—usually sliding scale insulin upon discharge with close monitoring (targets: 140–180 mg/dL)
- **Metformin** may be continued
- Incretin based therapies (GLP-1 receptor agonists and DPP-4 inhibitors) can be continued, but are often discontinued due to impact of bariatric surgery on incretin physiology (especially RYGB and DS)
- **TZDs and SGLT2 inhibitors** can be continued, but are often discontinued due to expected changes in insulin sensitivity and volume status
- Alpha glucosidase inhibitors should be discontinued due to their GI side effects
- Note: if possible, use weight negative anti-diabetes medications

Hypertension

- One-year remission
 - 83% DS
 - 68% RYGB
 - 17% LAGB
- Seven-year remission
 - 38% RYGB
 - 17% LAGB

Reductions in BP seen almost immediately after surgery Weight dependent and independent mechanisms

Hypertension

- Due to more variability and potentially less durable results, monitor BP regularly and adjust medications as needed.
- If possible, use weightneutral antihypertensive medications.

Dyslipidemia

- LDL improved in 71%
- TG improved in 82%
- Three-year outcomes
 - RYGB: 62% remission
 - LAGB: 27% remission
- Similar results after 7 years
- Individualize treatment based on risk factors to determine elimination or reduction of cholesterol-lowering medications

Micronutrient Management

obesitymedicine.org

CLINICAL LEADERS IN OBESITY MEDICINE®

Micronutrient	Dose
Thiamine	12 mg/day
Vitamin B12 (Cobalamin)	Oral/SL: 350–500 mcg/day; intra-nasal: 1,000 mcg/week, IM: 1,000 mcg/month
Folate (folic acid)	400-800 mcg/day; women of child-bearing age: 800-1,000 mcg/day
Iron	18 mg/day, RYGB/SG/DS or menstruating women: 45–60 mg/day; take separately from calcium supplements; taking with vitamin C or meat can help with absorption
Vitamin D3	3,000 IU/day
Vitamin A	LAGB: 5,000 IU/day, RYGB or SG: 5,000–10,000 IU/day, DS: 10,000 IU/day
Vitamin E	15 mg/day
Vitamin K	LAGB, SG, RYGB: 90–120 mcg/day, DS: 300 mcg/day
Zinc	SG or LAGB: 8–11 mg/day, RYGB: 8–22 mg/dy, DS: 16–22 mg/day
Copper	SG or LAGB: 1 mg/day, RYGB or DS: 2 mg/day
Calcium (separate)	Calcium citrate: LAGB, SG, RYGB: 1,200–1,500 mg/day, DS: 1,800–2,400 mg/day (divided doses)

Schedule for Post-Operative Micronutrient Monitoring

Schedule

- 6 months
- 12 months
- 18 months
- 24 months
- Annually

Micronutrient

- Vitamin B12
- Folate
- Iron, ferritin, TIBC
- 25-hydroxyvitamin D
- Calcium
- Intact PTH
- 24-hour urinary calcium
- Thiamine (optional)
- Vitamin A (optional at 24 months, annually)
- Zinc (optional)
- Copper (optional)

Iron deficiency

- The most common deficiency after RYGB (up to 50%)
- Microcytic anemia with low iron levels, low ferritin levels, and increased transferrin or total iron-binding capacity
- Fatigue, pica
- Spoon-shaped nails, vertical ridges on nails
- Repletion
 - 150–200 mg/day, up to 300 mg two to three times/day
 - IV iron infusion for severe/refractory

B12 Deficiency

- 26–70% after RYGB
- Decreased serum B12, increased MMA (methylmalonic acid)
 - Pernicious anemia due to lack of intrinsic factor
 - Megaloblastic anemia
 - Low platelets, low WBC
 - Glossitis: "beefy red tongue," pale skin
 - Neuropathy (numbress and paresthesias)
 - Fatigue, depression
 - Lightheadedness
 - Tinnitus
 - Palpitations
 - Rapid HR
 - Anorexia
 - Diarrhea

- Angina
- Altered mental status
- Dementia
- Psychosis
- Repletion
 - Oral: 1,000mcg/day
 - IM: 1,000 mcg/month to1,000–3,000 mcg/6–
 12 months

Early signs/symptoms

- **Dry Beriberi** (without edema): brisk tendon reflexes, peripheral neuropathy, muscle weakness/pain upper and lower extremities, gait ataxia, convulsions
- Wet Beriberi: heart failure with high CO, edema (LE), tachy- or bradycardia, lactic acidosis, dyspnea, cardiac hypertrophy and dilation, SOB, systemic venous HTN, bounding arterial pulses
- **Other/GI**: slow gastric emptying, nausea, vomiting, megacolon, constipation

Advanced signs/symptoms

- Wernicke's encephalopathy: polyneuropathy and ataxia, ocular changes (ophthalmoplegia and nystagmus), confabulation, short-term memory loss
- Korsakoff psychosis: psychosis/hallucinations
- Repletion
 - Oral: 100 mg two to three times daily
 - IM: 250 mg daily for three to five days or 100–250 mg monthly
 - IV: 200 mg two to three times daily to 500 mg one to two times daily for three to five days, followed by 250 mg/day for three to five days
 - Administer thiamine prior to dextrose-containing solutions (glucose)

Folate Deficiency

- Changes in pigmentation or ulceration of skin, nails, or oral mucosa
- Megaloblastic anemia
- Reduced sense of taste
- Numbness/tingling (paresthesias)
- Weakness
- Depression
- **Pregnancy: NTD***
- Repletion
 - 1,000 mcg/day

Calcium Deficiency

- Elevated PTH, low serum calcium
- DXA: baseline and after 2 years
- Signs/symptoms
 - Leg cramping, tetany
 - Neuromuscular hyperexcitability
 - Muscle weakness
- Osteopenia/osteoporosis
- Repletion
 - RYGB/sleeve: 1,200–1,500 mg/day (Divided in 500-600 mg doses)
 - DS: 1,800-2,400 mg/day

Vitamin D Deficiency

- Low 25-hydroxyvitamin D
- Elevated PTH
- 90% patients with obesity
- Signs/symptoms
 - Hypocalcemia, tetany, cramping, tingling
- Repletion
 - D3 6,000 IU/day or D2 50,000 IU one to three times weekly

Protein Malnutrition

- Most common after malabsorptive procedures
- Kwashiorkor = severe protein malnutrition w/o calorie deficiency
- Edema, hair loss, muscle wasting
- Check albumin and pre-albumin
- Minimum 60 g protein per day
- 1.5–2.1 g/kg ideal body weight
- 90–120 g protein/day BPD/DS
- Resistance training to reduce muscle mass loss

Managing Complications Following MBS

obesitymedicine.org

CLINICAL LEADERS IN OBESITY MEDICINE®

Dumping Syndrome - RYGB

- Within one hour of eating
- GI: nausea, diarrhea, abdominal fullness
- Vasomotor: weakness, diaphoresis, fatigue, syncope
- Likely due to osmotic shift caused by rapid delivery of nutrients to small intestine: rapid increase of fluids into GI tract to "dilute" content
- Typically occurs with high sugar/ carbohydrate foods
- Treatment: small portions, avoid high sugar/carb/fat foods

Post-Gastric Bypass Hypoglycemia (PGBH)

- Rare!
- Can occur months to years after RYGB
- Postprandial hypoglycemia (glucose under 55 mg/dL)
- Signs/symptoms
 - Confusion, loss of consciousness
- Stimulated by carbohydrate containing meal
- Distinguished from dumping syndrome: no vasomotor symptoms
- Beta cell hyperfunction: hypersecretion of insulin, high GLP-1 levels
 after RYGB
- Mismatch of glucose clearance and insulin clearance?
- No standardized testing: 3-day continuous blood glucose monitoring or mixed meal tolerance test with glucose before and 30 minutes postprandial
- Treatment: small meals, very low carbohydrate, high in protein and fiber

Weight Recidivism

- No standard definition of recidivism
- 25–70% of patients are affected by weight recidivism, depending on definition
 - Under 50% EWL, under 20% TBWL, over 25% weight regain, over 5 BMI points regain
- Obesity is a <u>chronic</u> disease with <u>no cure</u>
- Weight regain *does not* equal failure
- Bariatric surgery is a tool, and tools can get dull over time!
- Even after bariatric surgery, additional tools to manage obesity will likely be needed
- Return of medical complications of obesity
- Lifelong follow-up and management by PCP or obesity clinician

- Bariatric and metabolic surgery is the most effective and durable treatment available for the treatment of severe obesity
- One percent of patients who qualify for bariatric surgery are receiving MBS
- Referring to bariatric surgeon is standard of care for severe obesity as well as for many conditions caused by excess adiposity
- BMS increases life expectancy and quality of life
- Risks and complications: know how to screen for and manage
- Obesity is a chronic, progressive, relapsing disease regardless of treatment, and should be treated as such
- Most common complaint: "I wish I had done it sooner"

- Kim, T., Kim, S., & Schafer, A. (2018). Medical management of the postoperative bariatric surgery patient. NCBI Bookshelf, National Institutes of Health. https://www.ncbi.nlm.gov/books/NBK481901/?report=printable. Accessed 11/12/2019
- Parrott, J. (2017). American Society for Metabolic and Bariatric Surgery integrated health nutritional guidelines for the surgical weight loss patient 2016 update: Micronutrients. *Surgery for Obesity and Related Diseases.* <u>http://dx.doi.org/10.1016/j.soard.2016.12.018</u>
- Mechanick, J. (2013). Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient, 2013 update: Cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. *Surgery for Obesity and Related Diseases*. <u>http://dx.doi.org/10/1016/j.soard.2012.12.010</u>
- Clinical Pearls for Emergency Care of the Bariatric Surgery Patient © 2010 American Society for Metabolic and Bariatric Surgery
- Bays, H. E., McCarthy, W., Christensen, S., Wells, S., Long, J., Shah, N. N., & Primack, C. (2019). Obesity algorithm ebook, presented by the Obesity Medicine Association. www.obesityalgorithm.org. <u>https://obesitymedicine.org/obesity-algorithm/(Accessed = 11/12/2019)</u>

Thank you!

kburridge@lifeweigh.com

