

Primary Hemangioblastoma - a case report

Christian Sye PA-S, Sheree Piperidis PA-C Quinnipiac University Graduate Physician Assistant Program

Introduction

- Hemangioblastomas are rare, benign, highly vascularized central nervous system tumors.¹
- The mass effect of hemangioblastomas on surrounding structures often cause neurologic symptoms like headache, nausea and vomiting, or motor or sensory deficits depending on their location.¹
- Hemangioblastomas contribute to approximately 2% of all CNS tumors and have an incidence rate of 0.141 per **100,000** person-years.²
- While often sporadic, hemangioblastomas can be associated with the genetic syndrome von Hippel-Lindau syndrome, where multiple hemangioblastomas appear in the spinal cord, with other malignant tumors like renal cell carcinomas and pheochromocytomas.¹

Discussion

- The preferred diagnostic method for assessing hemangioblastomas is gadolinium-enhanced magnetic resonance imaging ⁴
- The clinical management of a hemangioblastoma often depends on the anatomical location of the lesion.⁴
- Surgical resection with preoperative angiogram and embolization is the primary definitive modality of treatment, especially in masses that are sporadic, isolated, and not associated with von Hippel-Lindau disease.⁴
- Stereotactic radiosurgery is the promising treatment method that is most indicated in cases of multiple tumors or in anatomically difficult locations ^{5.6}
- Genetic testing for von Hippel-Lindau disease is recommended in patients with multiple hemangioblastomas, age of diagnosis less than thirty years, or if patient with a hemangioblastoma has family history of von-Hippel Lindau disease.⁷

Case Description

History

- Thirty eight year old Caucasian male with no pertinent past Alert and oriented x3, CN II-XII intact. Strength medical history
- One month of sharp, constant headache at the top and sides of his head that fluctuates in pain severity, at worst is & Cardiac, Pulmonary, Abdominal exams all 10/10 and not relieved by over the counter analgesics
- Associated nausea, photophobia, lightheadedness and & Vital signs within normal limits **transient vision loss** when the pain is most severe
- Denies recent head trauma or nuchal rigidity, chest pain, SOB, vomiting, fever or chills, vertigo, or vision changes at * Computer Tomography of Head without baseline

Social history - Pt works as truck driver, but is currently on

paternity leave. Married with a three month old boy. Denies

smoking, drinking, illicit drug use. Exercises regularly, eats

Past medical history - none

a healthy diet.

- Past surgical history none
- Medications none Family history - none
- Allergies none
- with surrounding edema.

unremarkable

Review of systems - unremarkable

Physical Exam

5/5 throughout, sensory intact, reflexes 2+ and symmetric, coordination and gait normal

Diagnostic Testing

contrast - **cystic lesion** measuring up to **4.4** cm in the RIGHT cerebellar hemisphere,

Magnetic Resonance Imaging of Brain with and without contrast - intra-axial slightly

irregular minimally septated heterogeneous

lesion with thick-walled peripherally

enhancing nodular cystic lesion in the right

cerebellum. Likely hemangioblastoma.

Fig 2. Magnetic Resonance Imaging - Sagittal View

Patient Outcome

- The patient was admitted to neurosurgery and underwent a suboccipital craniotomy for tumor resection.
- The procedure was tolerated well and the patient was discharged four days later on dexamethasone 4 mg daily with follow up with neuro-oncology without major complications.
- The patient continues to have intractable headaches, and has visited the emergency room twice in the two months post-surgery for pain control and further evaluation.

Conclusion

- Hemangioblastomas are rare, benign nervous system tumors.
- In the cerebellar region, hemangioblastomas often present with headache and associated nausea.
- The absence of risk factors or comorbid conditions does not exclude the possibility of a hemangioblastoma.
- Magnetic resonance imaging is the primary diagnostic tool, and primary resection is the mainstay of treatment.

References

1. Jankovic D, Selimovic E, Kuharic M, Splavski B, Rotim K, Arnautovic KI. Understanding Adult Central Nervous System Hemangioblastomas: A Systematic Review. World Neurosurg. 2024;191:119-127. doi:10.1016/j.wneu.2024.08.032 2. Kuharic M, Jankovic D, Splavski B, Boop FA, Arnautovic KI. Hemangioblastomas of the Posterior Cranial Fossa in Adults: Demographics, Clinical, Morphologic, Pathologic, Surgical Features, and Outcomes. A Systematic Review. World Neurosurg. 2018;110:e1049-e1062. doi:10.1016/j.wneu.2017.11.173

3 American College of Emergency Physicians Clinical Policies Subcommittee (Writing Committee) on Acute Headache: Godwin SA, Cherkas DS, et al. Clinical Policy: Critical Issues in the Evaluation and Management of Adult Patients Presenting to the Emergency Department With Acute Headache. Ann Emerg Med. 2019;74(4):e41-e74. doi:10.1016/i.annemergmed.2019.07.009

I. Palavani LB, Andreão FF, de Abreu LV, et al. Assessing the efficacy and safety of hemangioblastoma embolization: A comprehensive systematic review and meta-analysis. J Clin Neurosci. 2023;117:104-113. doi:10.1016/j.jocn.2023.09.021 5. Pan J, Jabarkheel R, Huang Y, Ho A, Chang SD. Stereotactic radiosurgery for central nervous system hemangioblastoma: systematic review and meta-analysis. J Neurooncol, 2018:137(1):11-22. doi:10.1007/s11060-017-2697-0

6. Qiu J, Cai D, Yang F, et al. Stereotactic radiosurgery for central nervous system hemangioblastoma in von Hippel-Lindau disease: A systematic review and meta-analysis. Clin Neurol Neurosurg. 2020;195:105912. doi:10.1016/j.clineuro.2020.105912

7. Takami H, Graffeo CS, Perry A, et al. Presentation, imaging, patterns of care, growth, and outcome in sporadic and von Hippel-Lindau-associated central nervous system hemangioblastomas. J Neurooncol. 2022:159(2):221-231. doi:10.1007/s11060-022-04021-8