Infectious Bursitis: Evaluation & Management

Paul Jacob, MD MPH Assistant Professor; Vanderbilt University Medical Center Staff Physician, Hospital Epidemiologist; Tennessee Valley Healthcare System Veterans Affairs

1

Disclosures

• No financial conflicts to disclose

2

Objectives

- Background and approach to infectious bursitis from an Infectious Diseases perspective
- Diagnostic and therapeutic management
- Case review and general management considerations

Quick Overview

- Much higher incidence in men (esp ages 40-60)
- Exposure most frequently via microtrauma
- Pre-existing inflammatory conditions and immunocompromised status
- Septic olecranon bursitis $\underline{4 \text{ times greater}}$ than prepatellar bursitis
- 80% cases secondary to <u>Staph aureus</u>

4

5

Considerations

- Timeline: Acute vs sub-acute vs chronic
- Traumatic event vs repeated microtrauma
- Immunocompetent vs immunocompromised
- Typical vs atypical exposures
- Adjacent or underlying hardware

Infectious Etiologies of Septic Bursitis		
Most Common	Staph spp. (<mark>MSSA, MRSA</mark> , Staph. lugdunenesis, Staph epidermidis Strep spp. (S. pyogenes, S. dysgalactiae, S. anginosus, S. agalactiae (GBS))	
Less Common (But not unusual)	Enterococcus spp. Cutibacterium acnes (formerly Propianibacterium acnes) Gram negatives (E coli, Klebsiella spp., Pseudomonas, Enterobacter, Serratia, etc)	
Much less common (Sub-acute / chronic)	Mycobacterium TB, Non-tuberculous mycobacteria (M marinum, MAC) Nocardia sep. Brucella Fungal → Candida sep., Aspergillus, Cryptococcus, Histo / Blasto, Sporathrix Algae → Prototheca	

Clinical Presentation

- Clinical diagnosis often feasible
- Absence of pain with passive motion of the joint

Associated cellulitis, penetrating trauma, foreign object

Systemic signs

Baumbach et al

8

Case Study #1

 A 31 yo man, who works at a desk, with no previous medical hx presents with 3 days of progressive redness, pain and swelling of the LEFT elbow

• No fevers, rigors

• Started on Bactrim x 1 day without significant improvement

Case Study # 1

- Acute → favors typical bacterial flora (Staph, Strep)
- Works at desk, leans on elbow at work ightarrow Microtrauma / irritation
- Healthy, not immunocompromised \rightarrow Reduced likelihood of atypical organisms, typical course of management
- No unusual exposure ightarrow Most likely Staph / Strep

11

Diagnost	tic Interventi	ons	
Labwork	WBC Ct ←→	CRP 个 ESR Pro-cal	Blood Cultures $\leftarrow \rightarrow$
Ultrasound	Confirm bursitis / assess for joint effusion	Effusion vs Synovial Thickening	Calcification / Tophi
MRI	Abscess	Osteomyelitis	Joint effusion $\leftarrow ightarrow$
Plain Films	Foreign objects	Effusion	

14

Bursal Aspiration: Always Necessary?

• Favorable for diagnosis and microbiological investigation

• Risks for complications → Longer recovery

• Quicker recovery? (i.e. source control?)

Deal et. al	Retrospective 2020	Olecranon	11 / 30 underwent aspiration 6 / 11 draining sinus; 8/11 bursectomy 19/30 empiric abx ; 16 /19 w resolution
Thomas et. al	Retrospective ED Review 2022	Pre-patellar	61 / 157 discharged w empiric abx 58 /61 with f/u 51 / 58 had resolution w empiric abx 21 / 26 patients admitted w/o asp → resolution on abx
Beyde et. al	Retrospective ED Review 2022	Olecranon	147 / 264 discharged with empric abx 134 with follow-up 118 / 134 had resolution w empiric abx

Bursal Aspiration

- Ideally prior to antibiotics
- Wide range for sensitivity
- Bursal cell counts, gram stain, aerobic / anaerobic cultures Fungal / AFB cultures in some circumstances

17

Bursal Aspiration: An ID View

- Source control, source control, source control
- Diagnostic confirmation
- Microbiologic identification and susceptibility testing

Post-Operative Management

- Uncertain duration of antibiotic management post-surgical treatment
- Most recommendations vary from 1 week to 3 weeks
- Heterogeneous mixture depending on surgical tx, organism, patient history

19

20

Streptococci ID) or cephalexin (QID)
ID) or cephalexin (QID)
lavulanate
(Alternative) (Resistance?)
ernative) (D-D interactions)
t

MRSA and Streptococci	MSSA and Streptococci
Vancomycin	Cefazolin
Daptomycin (Alternative)	Nafcillin
Clindamycin (Alternative)	Clindamycin (Alternative)
Linezolid (Alternative)	Linezolid (Alternative)

Case Study #2

A 45 yo M landscaper with rheumatoid arthritis on methotrexate plus recent dose of steroids returns with 3 weeks of persistent redness, swelling and mild pain of the RIGHT elbow.

S/p a 7 day course of Augmentin and another 7 day course of Bactrim without any relief.

25

Case Study # 2

- Sub-acute / nearing chronic + failed abx \rightarrow Atypical or resistant organisms
- Works outside with exposure to soil, water \rightarrow gram negatives, fungal, mycobacterial, nocardia, anaerobes
- Immunocompromised (esp steroids) plus condition a/w bursitis

26

Case Study # 2

• DDx incl fungi (Histo, Blasto, Sporothrix), Nocardia spp., Mycobacterium spp.

This case was due to Prototheca wickerhamii

Takeaways

- Management remains heterogeneous with data suggesting majority of cases can be managed with empiric PO antibiotics.
- Failure to respond to 1st line therapy effective against Staph / Strep \rightarrow Better diagnostic data and / or source control.
- Medical therapy alone may be adequate and optimal in majority of cases.

28

References

- Deal BJ: Viceland K, Biolay N, Vinneleko ES, Rayn RA, Tangkical Instrument of uncomplicated space decamon bandha without availation. J Hend Kang Am. 2000;45(1):20–5. Biology AT, Biolay AK, Biolay AK, Biolay AK, Bandar AK, Haran AK, Kalina AK, Kalina AK, Bandar AK, Kalina AK, Bandar AK, Bandar AK, Kalina AK, Kalina AK, Bandar AK, Kalina KA, Kalina AK, Kalina KA, Kalina K
- Septimers B, Nelsen TB, Phillips MC, Ghanem B, Boyles T, Jegorović B, Footer B, Mah JK, Lieu A, Scott J, Wald-Olckier N, Lee TC, McDonald EG. Revisiting Diagnostics: ESR and CRP-It's Time to Stop the Zombie Tests. Clin Microbiol Infect. 2024 Aug 27:51198-7430(24)00416-6. doi: 10.1016/j.cmt.2024.08.017. Epub ahead of print. PMID: 39209263. Darrieutort-Lafflee C, Coffler G, Alm F, Bansl F, Barti G, Dazenan P, Coudert M, Coquerelle P, Ducourau Barbary E, Flop RM, Faudemer M, Godot S, Hoffmann C, Lecointe T, Lormau C, Malleman D, Poto JM, Seneuelle E, Soror R, Voquar C, Wignaud A, Gagenbahl P, Sallect C. 2023 French recommendations for dagnosing and managing prepatellar and decramon special burstis. Junit Bores 2024 Mer 2013;USS44. doi: 10.1054/j.doi.10.10544. doi:10.1016/j.ppi.2023114052. Micro.2014.005451.