

Early Psychosocial Factors Predict Physical Function and Return to Work Status at a 2- Year Follow-Up After a Lower Extremity Fracture The College of Lucy C. Bowers, BS, PA-S, William Charlton, BS, Josh Van Wyngaarden, PT, DPT, PhD, Brian W. Noehren PT, PhD, Paul E. Matuszewski, MD

Results

138 (78%) completed this

· 15% increase in light

11% decrease in ability

to return to heavy

duty only work.

study.

· At 24 months:

work.

Introduction

- There are approximately 500,000-600,000 lower extremity fractures occurring within the United States each year.
- The cost of treating these lower extremity fractures (LEF) are expensive.
- In 2017, the Army estimated cost from a lower extremity fracture to be \$116 million dollars.
- \$92 million was due to limited/ lost duty status. This is 4x what was spent on direct medical care.
- Patients are constantly asking when they can return to work, however, there are not many tools to help clinicians answer these questions.
- It is challenging to prognosticate recovery, but emerging evidence is supporting the importance of psychosocial factors.
- Return to work (RTW) has yet to be reported.

Purpose

 Determine if early psychosocial screening predicted the ability to RTW and self-reported physical function 24- months after a LEF requiring surgical fixation

Methods

- Prospective Longitudinal Cohort Study
- · At 6-weeks and 3-months post-injury:
- Pain Catastrophizing Scale (PCS)
- Pain Self-Efficacy Questionnaire (PSE)
- Patient Reported Outcome Measurement Information System (PROMIS)
- At 24-months post injury:
- Cincinnati Occupational Rating Scale (CORS)
- PROMIS Physical Function
- Separate linear regression analyses were completed for each outcome
- Each model: BMI, Age, smoking status, depression, Injury Severity Score, PSE, and PCS.

Subject Demographics (n = 177)		Fracture types: tibia (55%)
Characteristic	Mean ± SD or (%)	 (51%), femur (25%), pelvis/acetabulum (17%), ankle/foot (5%), and patella (2%). 45% had articular involvement. MVC were the most common mechanism (38%), followed by falls (29%).
Age (y)	41.9 ± 14.5	
Sex	Male: 54% Female: 46%	
BMI (kg/m²)	31.22 ± 8.84	
Length of Hospital Stay (days)	3.5 ± 3.4	
Race	White: 90% Non-white: 10%	
Smoker	27%	

Cincinnati Occupational Rating Scale at 24- months			
CORS Score	N (%)		
Disabled (CORS=0)	4 (2.9)		
Very Light Duty (CORS=1-20)	40 (29.4)		
Light Duty (CORS=21- 40)	45 (33.1)		
Moderate (CORS=41-60)	32 (23.5)		
Heavy (CORS=61-80)	11 (8.1)		
Very Heavy (CORS >80	4 (2.9)		

PSE and BMI Predictive Value of <u>CORS</u> at 24-Months				
	6-weeks	3-months		
Pain Self-Efficacy	b=0.357 95%Cl: 0.154 to 0.560 p=0.001	b=0.355, 95%Cl: 0.130 to 0.580 p=0.002		
BMI	b=-0.683, 95%Cl: -1.012 to -0.354 p<0.001	b=-0.732, 95%Cl:-1.072 to -0.392 p<0.001		

PSE and BMI Predictive Value of <u>Physical Function</u> at 24-Months				
	6-weeks	3-months		
Pain Self-Efficacy	b=0.243 95%Cl: 0.149 to 0.337 p<0.001	b=0.354 95%CI:0.263 to 0.446 p<0.001		
BMI	b=-0.336 95%Cl:-0.484 to -0.188 p<0.001	b=-0.318 95%Cl: -0.459 to -0.178 p<0.001		

Results Cont.

- Patients with a high BMI at baseline (greater than 30) reported:
- Lower physical function at 24- months: -5.64pts (-11.4%)
- Lower Occupational Rating Score: -16.2pts (-38.5%)
- Patients with low Pain Self-Efficacy score (Less than 40):
 - at 6-weeks
 - · Lower physical function at 24mo: -6.42pts (-12.8%)
 - Lower Occupational Rating Score: -12.63pts (-30%)
 - At 3-months
 - Lower physical function at 24mo: -8.41pts (-16.8%)
 - Lower Occupational Rating Score: -12.39pts (-31.5%)

Conclusion

- Lower extremity fractures are common, disabling, and expensive.
- Most cost is from disability, NOT direct care.
- Our findings show two new tools to help identify patients most at risk for not making a complete recovery with a time to intervene:
- Low Pain Self- Efficacy (<40 at 6 weeks or 3 months) OR High patient BMI at baseline (>30)
- Worse physical function and occupational status at 24 months

References

1.United States Bone and Joint Initiative: The Burden of Musculoskeletal Diseases in the United States (BMUS), Third Edition, 2014. Rosemont, IL. Available at http://www.boneandjointburden.org. Accessed on March 18, 2024

- 2.Forrest LJ, Jones BH, Barnes SR, et al. The cost of lower extremity fractures among active duty U.S. Army soldiers, 2017. MSMR. 2021;28(6):6-12. Published 2021 Jun 1.
- 3.Faergemann C, Frandsen PA, Rock ND. Residual impairment after lower extremity fracture. J Trauma. 1998;45(1):123-126.
- 4.MacKenzie EJ, Bosse MJ, Kellam JF, et al. Early predictors of long-term work disability after major limb trauma. J Trauma. 2006;61(3):688-694. 5.O'Donnell ML, Varker T, Holmes AC, et al. Disability after injury: the
- cumulative burden of physical and mental health. J Clin Psychiatry. 2013;74(2):e137-143.