# The Electrodiagnostic Study and Management of Peripheral Neuralgia and Radiculopathy

BLAISE PASCALE, MD, MPH

MAJ, MC, USA



#### I have no financial disclosures

The views, information, and conclusions expressed herein are those of the author alone.





Identify common and uncommon causes of peripheral neuropathy

Understand the pathophysiology of radiculopathy

Familiarize with Conservative management strategies

### Initial Evaluation

History
Neuromuscular examination
+/- NCS/EMG
+/- Ultrasound evaluation

### The Role of Electrodiagnostics

► Localization



Extension of the physical exam

### The Role of Electrodiagnostics

EDX studies establishing or rule out diagnoses, define severity or chronicity of a diagnosis, and assist with prognosis.

An extension of the examination as a supplement to a thorough evaluation.

EDX studies are interpreted in real time and often add additional relevant studies or remove irrelevant ones

# Electrodiagnostics (EDX) Overview

- Nerve Conduction Study (NCS)
  - Focal examination of a specific nerve
    - Latency
    - Amplitude
    - Conduction Velocity
- Electromyography (EMG)
  - Focal examination of individual muscles
    - Spontaneous Activity
    - Firing Rate (recruitment)



| Side  | Muscle              | Nerve      | Root   | Ins Act | Fibs | Psw | Amp | Dur | Poly | Recrt | Int Pat |
|-------|---------------------|------------|--------|---------|------|-----|-----|-----|------|-------|---------|
| Right | Deltoid             | Axillary   | C5-6   | Nml     | Nml  | Nm1 | Nml | Nml | 0    | Nml   | Nml     |
| Right | Biceps              | Musculocut | C5-6   | Nml     | Nml  | Nm! | Nml | Nml | 0    | Nml   | Nml     |
| Right | Triceps             | Radial     | C6-7-8 | Nml     | Nml  | Nm! | Nml | Nml | 0    | Nml   | Nml     |
| Right | FlexCarRad          | Median     | C6-7   | Nml     | Nml  | Nm! | Nml | Nml | 0    | Nml   | Nml     |
| Right | Abd Poll Brev       | Median     | C8-T1  | Nml     | Nml  | Nml | Nml | Nml | 0    | Nml   | Nml     |
| Right | Cervical Parasp Mid | Rami       | C4-6   | Nml     | Nml  | Nml |     |     |      |       |         |
| Right | Cervical Parasp Low | Rami       | C7-8   | Nml     | Nml  | Nml |     |     |      |       |         |
| Left  | Biceps              | Musculocut | C5-6   | Nml     | Nml  | Nml | Nml | Nml | 0    | Nml   | Nml     |
| Left  | Triceps             | Radial     | C6-7-8 | Nml     | Nml  | Nm! | Nml | Nml | 0    | Nml   | Nml     |
| Left  | Deltoid             | Axillary   | C5-6   | Nml     | Nm!  | Nm! | Nml | Nml | 0    | Nml   | Nml     |
| Loft  | FlexCarRad          | Median     | C6-7   | Nml     | Nml  | Nm! | Nml | Nml | 0    | Nml   | Nml     |
| Left  | Abd Poll Brev       | Median     | C8-T1  | Nml     | Nml  | Nm! | Nml | Nml | 0    | Nml   | Nml     |
| Left  | Cervical Parasp Mid | Rami       | C4-6   | Nml     | Nml  | Nm1 |     |     |      |       |         |
| Left  | Cervical Parasp Low | Rami       | C7-8   | Nml     | Nml  | Nml |     |     |      |       |         |

### Preparing patients

- A two-part study with the goal of assessing your nerves (from the spinal cord to the peripheral nerves) and how they interact with your muscles
- An uncomfortable study, but far from intolerable.
- Do not use any lotions or moisturizers before your study.
- Wear warm clothing to the appointment

# Anatomy & Physiology

#### Motor Unit

- Anterior Horn Cell
- ► Axon
- ► Terminal Branches
- ► NMJ
- Muscle Fibers



# Primary Motor and Sensory Neurons

- Anterior horn cells located in ventral gray matter of the spinal cord
  - Exit ventrally as motor roots
- Dorsal Root Ganglion
  - Near the intervertebral foramen
  - Central and peripheral projections
- Mixed Spinal Nerve
  - Dorsal ramus: innervation to paraspinal muscles and skin
  - Ventral ramus: brachial plexus (C5-T1), intercostal nerves, Lumbosacral plexus



#### Nerve Conduction Studies (NCS)

Motor Conduction Studies

Sensory Conduction Studies

Mixed Conduction Studies



### NCS: Sensory Conduction Studies

#### Sensory Nerve Action Potential (SNAP)

- Summation of all individual sensory fiber action potentials
- Peak latency: midpoint of first negative peak
- Amplitude:
  - ► low → peripheral nerve involvement
- Conduction Velocity: one stimulation
  - Speed of fastest cutaneous sensory fibers

All SNAPs remain normal in lesions proximal to the DRG



### NCS: Motor Conduction Studies

#### Compound Muscle Action Potential (CMAP)

- Summation of all underlying individual muscle fiber action potentials
- Onset Latency: 3 processes
  - 1. Time from stim to NMJ
  - 2. Time across NMJ
  - 3. Depolarization time across muscle
- Amplitude: reflects number of fibers that depolarize

Conduction Velocity: speed of fastest fibers



### NCS: Mixed Conduction Studies

- Measure action potentials from both sensory and motor nerve
- Typically only median, ulnar and distal tibial nerves are studied
- Record the la fibers (muscle afferents) in addition.
  - Affected earliest in demyelinating lesions
- Clinically important- removal of offending agent should restore complete function

# Pathophysiology: Nerve Injury

#### Seddon's Classification

- Neurapraxia (conduction block)
- Axonotmesis (Connective Tissue intact)
- Neurotmesis (transection)

#### Sunderland's Classification

- ► Type 1: Neurapraxia
- ► Type 2: Axonotmesis
- ► Type 3: 2 + Endoneurium injury
- ► Type 4: 3 + Perineurium injury
- ► Type 5: 4 + Epineurium injury (Neurotmesis)



### Recovery from Nerve injury

#### Remyelination-- 2 to 12 Weeks

#### Collateral Sprouting-- 2 to 6 months

- Occurs after degeneration of injured distal axon fragments
- Severe injury precludes sufficient sprouting

#### Regeneration– up to 18 months

- Proximal 6-8mm per day
- Distal 1-2mm per day



### The Role of EMG/NCS:





### Neuropathic Lesions

#### Axonal Loss:

- Physical disruption of the nerve
- ▶ Toxic, metabolic, or genetic conditions damaging the axon

#### Demyelination

- Loss or dysfunction of the myelin sheath
- Entrapment or compression
- Genetic (CMT); toxic (diphtheria); auto-immune (GBS)

#### Conduction block

Reduced amplitude proximally, as compared with distal stimulation

### **Basics:** Localization

Neuropathic: disorder of the peripheral nerve(s)

- Radiculopathy
- Plexopathy
- Mononeuropathy
- Multiple mononeuropathy
- Polyneuropathy

### Pathophysiology: Demyelination

Demyelination can follow compression

- Schwann cells proliferate
- Internodal distance shortens
- Conduction velocity prolongs



### AXONAL LOSS vs DEMYELINATION

#### REDUCED amplitude

- Conduction Velocity normal or slightly decreased
  - Never below 75% of lower limit of normal
- Latencies are typically normal or slightly prolonged
  - Never greater than 130% of upper limit of normal

- NORMAL Amplitude
- Marked slowing of CV
- Marked prolongation of distal latency
- Normal myelinated axons do not conduct slower than 35m/s in arms or 30m/s in legs

# Hyperacute axonal Loss lesion: (3-4 days)

Stimulation and recording distal to lesion is normal

Wallerian Degeneration: 7-11 principle
 (book answer-- motor 3-5 days; sensory 6-10 days)

"Pseudo-conduction block"

Acute trauma, nerve infarction

### Patterns of Conduction Abnormalities

A. Normal Study

**B.** Axonal Loss

**c. Demyelination** (uniform slowing)

Demyelination
 (Conduction Block)



#### Conduction Block

#### **Acquired Demyelination**



#### **Focalized Demyelination**



#### The EMG portion of the study

Spontaneous activity

A normal muscle at rest is quiet

Motor Unit Action Potential (MUAP) Morphology
 Duration, amplitude, phases

Recruitment:

Normal ; Decreased ; Increased ; Poor effort

Interference pattern

### Electromyography (EMG)



#### Importance of Needle EMG testing

EMG provides evidence of a nerve root lesion

Classical dermatomes are in the textbook---anatomical variation is present

Needle EMG has increased correlation to symptoms and PE findings and higher specificity than MRI

Needle EMG has strong specificity, but only modest sensitivity

### EMG – Upper Extremity

| ADULT EMG: % SENSITIVITY |                  |                |               |                     |                |                   |             |      |  |  |
|--------------------------|------------------|----------------|---------------|---------------------|----------------|-------------------|-------------|------|--|--|
| LEVEL                    | C5               |                | C6            |                     | C7             |                   | C8          |      |  |  |
|                          | Infraspin        | : 83%          | Ancon         | : 100%              | Triceps:       | 93%               | EIP:        | 100% |  |  |
|                          | Deltoid:         | 83%            | FCR:          | 80%                 | FCR:           | 93%               | FDI:        | 83%  |  |  |
|                          | BR:              | 83%            | PRT:          | 78%                 | Ancon:         | 78%               | ADM:        | 83%  |  |  |
|                          | Biceps:          | 71%            | BR:           | 71%                 | PRT:           | 61%               | FPL:        | 67%  |  |  |
|                          | PSP:             | 71%            | PSP           | 63%                 | PSP:           | 31%               | PSP:        | 80%  |  |  |
| Levin, K.H.              | 2002. Electrodio | agnostic appro | ach to the po | atient with suspect | ed radiculopat | hy. Neurol Clin 2 | 20, 397–421 |      |  |  |

#### EMG – Lower Extremity

| ADULT EMG: % SENSITIVITY                                                                                           |           |     |           |     |           |     |            |     |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|-----------|-----|-----------|-----|-----------|-----|------------|-----|--|--|--|
| LEVEL                                                                                                              | L3        |     | L4        |     | L5        |     | <b>S</b> 1 |     |  |  |  |
|                                                                                                                    | Rec Fem:  | 83% | Tib Ant:  | 92% | EHL:      | 87% | Gastrc:    | 90% |  |  |  |
|                                                                                                                    | Add Long: | 80% | RF:       | 83% | Per Long: | 84% | Abd Hall:  | 90% |  |  |  |
|                                                                                                                    |           |     | Add Long: | 80% | Tib Post: | 81% | EDB:       | 67% |  |  |  |
|                                                                                                                    |           |     |           |     | Tib Ant:  | 78% | Tib Post:  | 64% |  |  |  |
|                                                                                                                    |           |     |           |     | Glut Max: | 61% | Glut Max:  | 61% |  |  |  |
|                                                                                                                    |           |     |           |     | Med Ham:  | 60% |            |     |  |  |  |
|                                                                                                                    |           |     |           |     | EDB:      | 33% |            |     |  |  |  |
| Levin, K.H., 2002. Electrodiagnostic approach to the patient with suspected radiculopathy. Neurol Clin 20, 397–421 |           |     |           |     |           |     |            |     |  |  |  |

### Prognosis of Peripheral Nerve Lesions

#### Degree of demyelination

Neurapraxia- substantial recovery in 2-3 months

#### Extent of Axon Loss

 Distal axon sprouting may occur, depending on the degree (5 times territory worth of distal sprouting per axon)

#### Distance to muscle

- Risk of axonal stenosis, which can prevent reinnervation
- After 18-24 months, muscle can no longer be reinnervated
- Root avulsions
- Lower trunk lesions (brachial plexopathies)
- ► No definitive treatments to prevent this...

#### Upper Extremity Neuropathies

#### More Common

- Median Neuropathy
- Ulnar Neuropathy
- Radial Neuropathy
- Brachial Plexopathy

#### Less Common

- Axillary Neuropathy
- Suprascapular Neuropathy

Long Thoracic neuropathy

### Median Neuropathy

#### ► Etiologies:

- ► Entrapment:
  - Elbow- Pronator syndrome
  - Wrist- Carpal Tunnel syndrome
- ► Traumatic

#### Clinical Exam:

- Impaired sensation 1-3 digits
- ► Finger flexion weakness
- Wrist flexion weakness
- ► APB



### Ulnar Neuropathy

#### ► Etiologies:

- Entrapment:
  - Cubital Tunnel
  - Guyon's Canal
- ► Traumatic
- Clinical Exam:
  - Impaired sensation 4<sup>th</sup> and 5<sup>th</sup> digit
  - Atrophy/ Weakness of ADM, FDI, intrinsics



### Radial Neuropathy

#### ► Etiologies

- Compressive:
  - Crutch use (axilla)
  - Radial Tunnel
  - Watches / wrist bands / casts
- ► Traumatic
- Clinical Exam
  - Wrist drop
  - +/- Sensation changes



# Brachial Plexopathy

- ► Traumatic
- ► Hematoma
- Inflammatory
- Mass



### Axillary Neuropathy

#### Etiologies

- ► Compressive:
  - Quadrilateral space syndrome (rare)
- ► Traumatic:
  - Shoulder dislocation
  - ► Humerus fx
- Clinical Exam
  - Numb patch
  - Shoulder abduction weakness



# Suprascapular Neuropathy

#### ► Etiologies

- ► Compressive:
  - ► Ganglion Cyst
  - ► Rotator cuff tear
- ► Traumatic:
  - Repetitive overstretch in athletes
  - Surgical positioning
- Clinical Exam
  - Pain with shoulder movements
  - ► IS/SS weakness



### Long Thoracic Neuropathy

#### ► Etiology:

- Most from inflammation
- Ruck sack palsy
- Other stretch/compression
- Clinical exam:
  - Medial winging



### Radiculopathy

Herniation of nucleus pulposus

Spinal Stenosis:

- Degenerative Spondylosis
- Ligament hypertrophy
- Spondylolisthesis



### Radiculopathy

EDX Diagnosis: neuropathic abnormalities in muscles that share the same nerve root innervation

Patients typically undergo a screening examination when no true deficits are found on physical examination, but any weak muscles should certainly be tested.

Radiculitis (sensory radiculopathy) vs Radiculopathy

Affected peripheral muscles are variable based on the fascicular structure of nerves

### The Physical Exam

- L3/L4: squat test
- ► L5/L4: Heel-walking
- L5: Trendelenburg test S1: Toe-walking
- SLR/Slump test
- C5/6: Infraspinatus comparison testing
   C8/T1: ABP and FDI

#### Muscle Stretch Reflex Testing:

C5/6: Brachioradialis C7: Triceps

L4: Patella L5: Medial Hamstring S1: Achilles

### Spinal Imaging Interpretation

Interpret the symptoms, correlate the imaging. The degree of pathology does not always correlate with symptom severity.

Age-related changes are prevalent

- Degenerative changes are present at least 30% of the time, even in asymptomatic individuals by age 40.
- "disc bulge" is present in >70% of people after age 30

Lumbar MRI is not as useful for interpretation when stenosis is mild.

#### Radiculopathy Management

Conservative approach to managing a radiculopathy has been shown to result in good to excellent outcomes.

Neurological weakness--- to operate or not?

>75% of disc herniations resolve spontaneously by around 1 year

This was shown in conjunction with ESI treatment

### Treatments

- NSAIDs remain the mainstay of treatment for acute and chronic conditions
- Consider oral steroids acutely 5 day treatment with 5 day taper or Medrol dose pack---provider choice (hold NSAIDs during tx)

#### Opiates:

- Short course in acute injury with radicular symptoms
- Use in chronic cases makes pain worse!
- Neuropathic Agents
- Epidural Steroid Injection
  - ► Interlaminar
  - Transforaminal
  - Traditionally given in a series of three; provider dependent

### Surgical Consultation

#### Myelopathy

- Cervical stenosis with abnormal EMG findings
- Unstable spine
- Severe dynamic spondylolisthesis
- ► Fracture
- Infection
- ► Tumor

#### References:

- Preston, D. C., & Shapiro, B. E. (2013). Electromyography and neuromuscular disorders: Clinical-electrophysiologic correlations. Elsevier Saunders.
- Robinson, L. (2015). How electrodiagnosis predicts clinical outcome of focal peripheral nerve lesions. *Muscle & Nerve*, 321–333.
- AANEM monograph #63, Part I and II: Evaluation of Persons with suspected Lumbosacral and Cervical Radiculopathy: Electrodiagnostic assessment and Implications for Treatment and Outcomes. 2020