ABG PRACTICE: STEPS 1-2

- pH low (<7.4) = Acidosis, pH high (>7.4) = Alkalosis
- If pH and PCO2 move in opposite directions, respiratory disorder is primary
- If pH and PCO2 move in the same direction, metabolic disorder is primary

рН	PCO ₂	HCO ₃	Disorder
7.2	70	28	Respiratory Acidosis
рН	PCO ₂	HCO ₃	Disorder
7.2	30	16	Metabolic Acidosis

ABG PRACTICE: STEPS 1-3A

рН	PCO ₂	HCO ₃	Disorder
7.5	40	31	Metabolic alkalosis

рН	PCO ₂	HCO ₃	Disorder
7.5	30	16	Respiratory alkalosis

- If both pCO_2 and HCO_3 are $\uparrow \uparrow =$ respiratory acidosis OR metabolic alkalosis
- If both pCO_2 and HCO_3 are $\sqrt{1}$ = respiratory alkalosis OR metabolic acidosis

рН	PCO ₂	HCO ₃	Disorder
7.28	55	19	Primary respiratory acidosis, metabolic
ridosis			acidosis

- 1. Look at pH \rightarrow acidosis
- 2. Look at pH and PCO₂ \rightarrow opposite, respiratory disorder is primary
- 3. Look at pCO₂ and HCO₃ \rightarrow opposite, mixed disorder present \rightarrow HCO₃ low, implies metabolic acidosis also present

рН	PCO ₂	HCO ₃	Disorder
7.50	24	28	Respiratory alkalosis primary, metabolic alkalosis

- 1. Look at pH \rightarrow alkalosis
- 2. Look at pH and $PCO_2 \rightarrow$ opposite, respiratory disorder is primary
- Look at pCO₂ and HCO₃ → opposite, mixed disorder present → HCO₃ high, implies metabolic alkalosis also present

рН	PCO ₂	-	Primary Disorder
7.28	60	35	Respiratory acidosis

- 1. pH: Acidosis
- 2. pCO₂ and pH move in opposite directions \rightarrow primary respiratory disorder
- 3. pCO_2 and HCO_3 both high \rightarrow respiratory acidosis
- 4. Expected change with respiratory acidosis \rightarrow HCO₃ increases \checkmark

рН	PCO ₂	HCO3	Primary Disorder
7.5	55	36	Metabolic alkalosis

- 1. pH: Alkalosis
- 2. pCO₂ and pH move in same direction \rightarrow primary metabolic disorder
- 3. pCO_2 and HCO_3 are high = metabolic alkalosis
- 4. Expected change with metabolic alkalosis \rightarrow PCO₂ increases \checkmark

PRACTICE: MINDING THE GAPS

<u>ABG:</u>	
рН	7.18
PCO ₂	34 mmHg
HCO ₃	12 mEq/L

<u>BMP:</u> Na= 138, K=3.8, Cl=115 Albumin=2.3, Phos=1

calcAG = 138 - [115+12] = 11corrAG = $2 \times 2.3 + [0.5 \times 1] = 5.1 (+/-2)$ calcAG > corrAG \rightarrow HAGMA present Delta Gap = [calcAG- corrAG] + HCO₃ = 6 + 12 = 1818 < 24...therefore, NAGMA present also

A 26 YO M with asthma presents to the ED with difficulty breathing x 3 days. It is getting progressively worse. He has tried his regular and rescue inhalers; nothing seems to help. He looks pale and is taking rapid, shallow breaths. On exam, he has diffuse wheezing in all lung fields.

Vitals:

- HR 120
- BP 113/76
- RR 28
- $SpO_2 92\%$
- Temp 37.8C

ABG:

- pH 7.08
- pCO₂ 80 mmHg
- $HCO_3^{-} 28 \text{ mEq/L}$

Acute Respiratory Acidosis

CMP:

- Na 138 mEq/L (135-145)
- K 4.0 mmol/L (3.6-5.2)
- Cl 106 mEq/L (96-106)
- Albumin 3.8 g/dL (3.5-5.5)
- Phos 3.0 mg/dL (2.8 4.5)

ABG results:pH – 7.08

- pCO₂ 80 mmHg
- $HCO_{3}^{-} 28 \text{ mEq/L}$

Respiratory rule #1

- •pCO₂ ↑ by 40 (10x4)
- •Expected pH change = $0.08 \times 4 = 0.32$
- •Actual pH change = 7.4 7.08 = 0.32

CASE 1 DDX + MANAGEMENT

•Asthma exacerbation \rightarrow rapid, shallow breaths \rightarrow retaining CO₂ \rightarrow Acute Respiratory Acidosis

Management

• Reverse the respiratory acidosis, augment breathing to help improve gas exchange until the patient improves and can do so on their own

A 35 YO M presents to the ED with gun shot wound (GSW) to the abdomen. He was found down by a civilian about 20 minutes after the shooting who called 911. Upon arrival, he appears pale, diaphoretic, and is experiencing severe abdominal pain. He is slightly altered and cannot tell you where he is. He has no past medical history.

Vitals:

- HR 116
- BP 86/68
- RR 10
- $SpO_2 96\%$
- Temp 37.6C

ABG:

- pH 7.18
 pCO₂ 34 mmHg
- $\mu CO_2 = 34 \text{ mining}$
- HCO₃⁻ 12 mEq/L

Acute Metabolic Acidosis

CMP:

- Na 132 mEq/L (135-145)
- K 3.6 mmol/L (3.6-5.2)
- Cl 92 mEq/L (96-106)
- Albumin 3.2 g/dL (3.5-5.5)
- Phos 2.1 mg/dL (2.8 4.5)

Winter's formula (metabolic acidosis)

• Expected PCO₂ in metabolic acidosis:

= 1.5 x HCO₃ + 8 = **26 (+/- 2)** Expected pCO₂ is lower than our actual... what does this mean?

CASE 2 EXPLANATION

- •The expected degree of respiratory compensation is not present.
- •There is also a respiratory acidosis
- •Respiratory depression/AMS \rightarrow slower, shallow breaths \rightarrow CO₂ retention \rightarrow respiratory acidosis
 - •Expect patient to ventilate more in response to metabolic acidosis.

ABG results:

- pH 7.18
- pCO₂ 34 mmHg
- HCO₃⁻ 12 mEq/L

Other results (pertinent):

- Na 132 mEq/L (135-145)
- K 3.6 mmol/L (3.6-5.2)
- Cl 92 mEq/L (96-106)
- Albumin 3.2 g/dL (3.5-5.5)
- Phos 2.1 mg/dL (2.8 4.5)

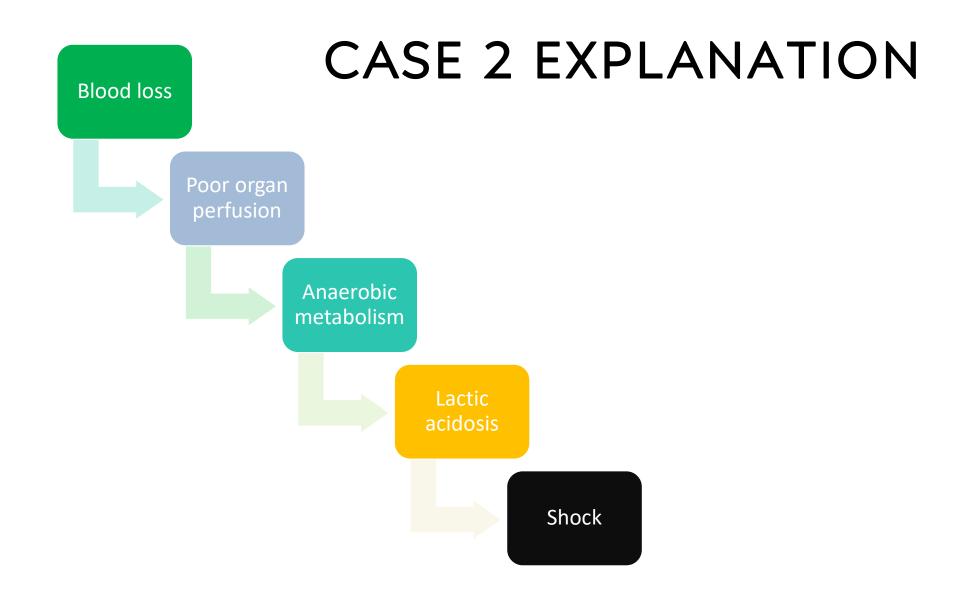
- calcAG = 132 [92+12] = 28
- corrAG = [2x3.2]+[0.5x2.1] = 7.45
- calcAG>corrAG = HAGMA present (we already know this)
- Delta gap = [28-7.45]+12 = 32.55
- Delta gap > 24 → metabolic alkalosis also present

HAGMA + Respiratory Acidosis + Metabolic Alkalosis

CASE 2 DDX

calcAG = 132 - [92+12] = 28

Respiratory Acidosis


- ↓respiratory stimulus
- Atelectasis
- Additional injuries?

HAGMA

- MUDPILES:
 - Methanol
 - Uremia
 - DKA
 - Propylene glycol (Ativan, Dilantin)
 - Isoniazid/Iron
 - Lactate
 - Ethanol/Ethylene glycol
 - Salicylates/Seizures/Starvation

CASE 2 MANAGEMENT

- •You obtain a lactate level to confirm your suspicion: 6.2 mmol/L (<2.3).
- •His renal function is normal for now.
- •His H/H is <mark>8 g/dL / 26%</mark> (13.2-16.6 / 38.3-48.6%).

A 64 YO M with ESRD s/p kidney transplant, type 2 DM, and chronic HFrEF presents to the ED with 3 days of fatigue, abdominal pain, and shortness of breath. He is unsure, but he may have had a fever. On exam, he appears unwell and has crackles in the L lung base. He missed dialysis today. CXR shows a L basilar infiltrate.

Vitals:

- HR 100
- BP 92/78
- RR 20
- SpO₂ 84%
- Temp 38.0

ABG:

- pH 7.29
- pCO₂ 23.3
- $HCO_3^- 11.1$
- pO₂ 52.9

Acute Metabolic acidosis

labs:

- Na 136
- K-5.2

- Glucose 260

- Albumin -2.8
- Phos 3.0
- BUN 89.1
- Cl 106 Cr 4.3
- AG 18 Lactate 1.3
 - Betahydroxybutyrate -2.7

A	BG results:
•	рН 7.29
•	pCO ₂ 23.3
•	HCO ₃ ⁻ 11.1
•	pO ₂ 52.9

Winters formula Expected $pCO_2 = 1.5 \times 11 + 8 = 24.5 (+/-2)$ Actual $pCO_2 = 23.3$

CASE 3

ABG results:

- pH 7.29
- pCO₂ 23.3
- HCO₃⁻ 11.1
- pO₂ 52.9

Other results (pertinent):

- Na 136
- K 5.2
- Cl 106
- Glucose 260
- Albumin 2.8
- Phos 3.0
- BUN 89.1
- Cr 4.3
- Lactate 1.3
- Beta-hydroxybutyrate 2.7

- •calcAG = 136 [106+11] = 19
- •corrAG = [2x2.8] + [0.5x3.0] = 7.1
- calcAG>corrAG = HAGMA present (we already know this)
- •Delta gap = [19-7] + 11 = 23
- •Delta gap < 24 = NAGMA also present HAGMA + NAGMA

CASE 3 DDX

MUDPILES = HAGMA

- Methanol
- Uremia
- DKA
- Propylene glycol (Ativan, Dilantin)
- Isoniazid/Iron
- Lactate
- Ethanol/Ethylene glycol
- Salicylates / Seizures / Starvation

calcAG = 136 - [106+11] = 19

labs:

- Na 136
- K-5.2
- Cl 106
- AG 18
- Glucose 260
- Albumin 2.8
- Phos 3.0
- BUN-89.1
- Cr 4.3
- Lactate 1.3
- Beta-hydroxybutyrate 2.7

CASE 3 DDX

MUDPILES = HAGMA

- Methanol
- Uremia
- DKA
- Propylene glycol (Ativan, Dilantin)
- Isoniazid/Iron
- Lactate
- Ethanol/Ethylene glycol
- Salicylates / Seizures / Starvation

ABCDE = NAGMA

Addison's

- Bicarbonate loss (GI or renal think v/d, fistula, ostomy)
- Chloride excess
- **D**iuretics (acetazolamide)
- Extra Renal tubular acidosis (RTA)

A 68 YO F presents to the ED with 3 days of progressively worsening cough and shortness of breath. She has been experiencing intermittent fevers. Her appetite is diminished, and she is fatigued. On exam, she has scattered crackles. CXR reveals multifocal pneumonia.

Vitals: HR 96 BP 112/82 RR 26 SpO₂ 84% Temp 37.9 C

ABG:

• pH 7.55

- pCO₂ 22 mmHg
- HCO_3^{-} 16 mEq/L

Acute Respiratory Alkalosis

Labs: Na – 134 K – 4.2 Cl – 100 BUN – 32 Cr – 1.2 Albumin – 3.8 Phos – 3.0 Lactate – 3.2

ABG Results:

• pH 7.55

- pCO₂ 22 mmHg
- HCO_{3}^{-1} 16 mEq/L

Compensation rules...Boston Approach for Resp Disorders

CASE 4

Change in CO2	Change in HCO3	Condition	Example
10	1	Acute Resp Acidosis	If CO2=50,
			HCO3=25
10	2	Acute Resp Alkalosis	If CO2=30,
		-	HCO3=22
10	4	Chronic Resp Acidosis	If CO2=50,
			HCO3=28
10	5	Chronic Resp Alkalosis	If CO2=30,
			HCO3=19

ABG Results:

• pH 7.55

- pCO₂ 22 mmHg
- HCO₃⁻ 16 mEq/L

Compensation rules...Boston Approach for Resp Disorders

CASE 4

Change in CO2	Change in HCO3	Condition	Example
10	1	Acute Resp Acidosis	If CO2=50,
			HCO3=25
10	2	Acute Resp Alkalosis	If CO2=30,
	2	_	HCO3=22
10	4	Chronic Resp Acidosis	If CO2=50,
			HCO3=28
10	5	Chronic Resp Alkalosis	If CO2=30,
			HCO3=19

 pCO_2 went from 40 \rightarrow 22 (roughly 20)

We expect HCO_3 to decrease by 4 (using 24 baseline): HCO_3 should be 20 but it is $16 \rightarrow$ is there a mixed disorder present?

ABG Results:

- pH 7.55
- pCO₂ 22 mmHg
- HCO₃⁻ 16 mEq/L

Other results (pertinent):	
Na – 134	
K – 4.2	
CI – 100	
BUN – 32	
Cr – 1.2	
Albumin – 3.8	
Phos – 3.0	
Lactate – 3.2	

- calcAG = 134– [100+16] = 18
- corrAG = [2x3.8] + [0.5x3.0] = 9.1
- calcAG>corrAG = HAGMA present
- Delta gap = [18-9.1] +16 = 32.9
- Delta gap = 24.9 ...close enough! Only HAGMA present

Acute Respiratory Alkalosis + HAGMA

CASE 4 DDX

- Hypoxia 2/2 pneumonia leads to hyperventilation reducing systemic CO₂ → acute respiratory alkalosis
 - <u>MUDPILES = HAGMA</u>

calcAG = 134- [100+16] = 18

- Methanol
- Uremia
- **D**KA
- Propylene glycol (Ativan, Dilantin)
- Isoniazid/Iron
- Lactate
- Ethanol/Ethylene glycol
- Salicylates / Seizures / Starvation

ABG:

- pH 7.55
- pCO₂ 22 mmHg
- HCO₃⁻ 16 mEq/L