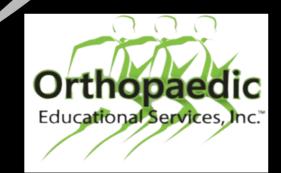


Things that go Bump in the Night, Ortho-OnCall

AAPA-AAOS Musculoskeletal Galaxy


June 10 to June 14, 2023

Austin, Texas

Tom Gocke, DMSe, PA-C

Faculty Disclosures

Orthopaedic Educational Services, Inc.

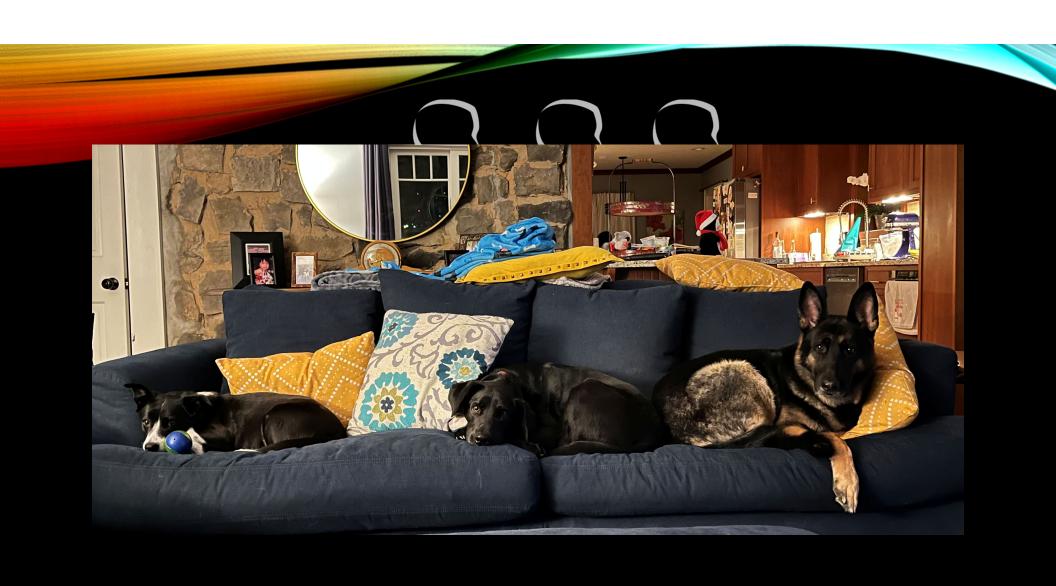
Financial
Intellectual Property
No off-label product discussions

American Academy of Physician Assistants

Financial
Splinting/Casting Workshop Director, MSK Galaxy Course

Associate Editor: JBJS-JOPA Journal of Orthopaedics for Physician Assistants

LEARNING OBJECTIVES


At the end of this lecture attendees will be able to:

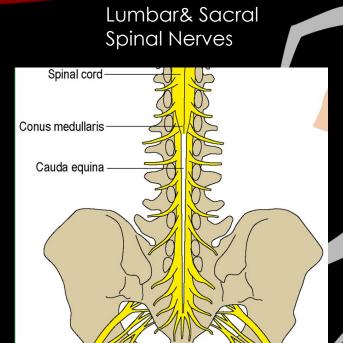
- Identify and treat emergent Cauda Equina
- Identify and treat emergent Hematoma
- Identify and treat emergent Acute Compartment Syndrome
- Identify and treat emergent Pelvic Ring Fx
- Identify and treat emergent Infections, Necrotizing fasciitis, Septic Hip vs. Toxic Synovitis
- Identify and treat emergent Open Fractures
- Identify and treat emergent Hip Fx/dislocation, Knee dislocation, Ankle fx/dislocation
- Identify and treat emergent AMS/Stroke
- Identify and treat emergent Chest Pain/MI
- Identify and treat emergent Atrial Fibrillation (Afib)
- Identify and treat emergent Pulmonary Embolism

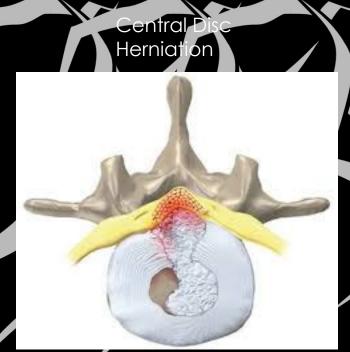
ORTHOPAEDIC PROBLEMS

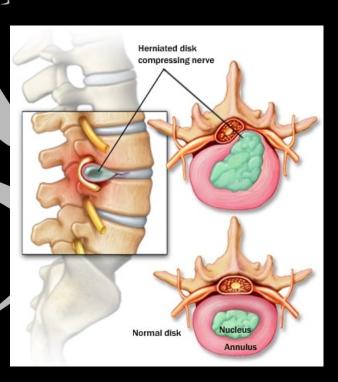
- Cauda Equina
- Epidural Hematoma
- Compartment Syndrome
- Pelvic Ring Fx
- Septic Hip vs. Toxic Synovitis
- Open Fractures

ORTHO SPINE EMERGENCIES

TRUE SURGICAL EMERGENCY


Cauda Equina syndrome occurs when lumbosacral nerve roots are compressed preventing sensory and motor nerve feedback.


Failures to recognize and act on Cauda Equina syndrome may result in permanent paralysis, loss/impaired bowel & bladder control, & sexual dysfunction.


Causes:

- Trauma: blunt v. penetrating
- Disc herniation
- Post op hematoma/swelling- don't forget about anticoagulation
- Tumor/Infection
- Fracture
- Spinal Stenosis time progression?

© 2023 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED.

- · Cauda equina syndrome can cause a variety of symptoms severe low back pain
- bladder dysfunction such as urinary retention or incontinence (loss of control)
- bowel incontinence (loss of control)
- muscle weakness or sensory loss in both legs
- loss of motor function in legs (difficulty walking)
- loss or reduction of reflexes
- saddle anesthesia (inability to feel anything in the body areas that would sit on a saddle)
- Poor rectal tone or loss of anal wink

Examination

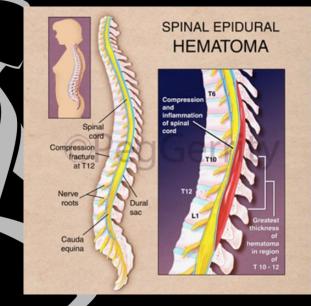
- YOU MUST SEE AND LAY HANDS ON THESE PATIENTS OFTEN
- Perform thorough Motor, Sensory & Reflex Exams
- Saddle Anesthesia
 - S2-S5 nerve roots
 - Sensory to Anal-perineum-inner Thigh
 - Diminished Rectal Sensation, Tone and Wink

Diagnostic Studies

- NPO Status & Anticoagulation status
- Don't waste time on labs imaging comes first
 - Labs: CBC, BMP, CRP, PT/INR
- Stat CT Myelogram Or Stat MRI w/ Gadolinium
- Some cases bypass studies and go directly to OR

Treatment:

• Surgical compression of pressure on spinal cord or spinal nerves


Epidural Hematoma

- Brain between skin and Dura
- Spine between the dura and watchral box
 - Within spinal car al
 - Spinal Cord damage
 - Neurologic injury/deficit

True Ortho Spinal Emergency

Causes:

- Trauma venous bleeding,
- Spontaneous anticoagulation, coagulopathies thrombocytopenia, reoplasm, Vascular malformations
- latrogenic –vertebral abnormalities, procedures, resuming/initiating anticoagulation or antiplatelet therapy post procedures

https://coreem.net/core/spinal-epidural-hematoma/

Clinical Presentation

- C/o sudden onset severe neck package
- Sudden onset radicular pain
- Pain /symptoms exacerbated by increased intractions and pressure (Cough/Sneeze/Valsalva)
- Spinal Tenderness on palpation or movement
- Motor/Sensory changes dependent of size of hematoma a level involved
- Focal weakness paraplegia or quadrinlegia
- Sensory loss local parasthesia to complete sensory loss involving affected levels

Diagnostic tests

- Hematomas may extend over multiple levels
- Total Spine imaging necessary

MRI – preferred test

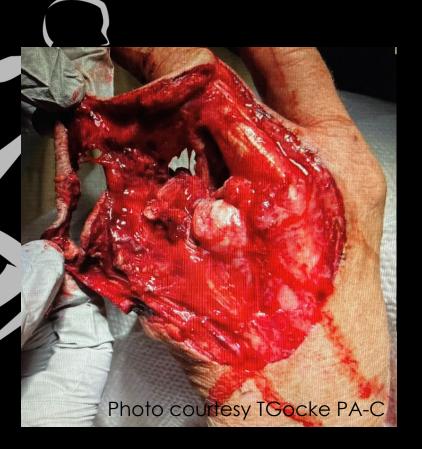
- With and without contrast
- Defines extent- volume precision locating hematoma.
- <24hrs hematoma isointense on Talimage & hyperintense Talimages
- >24 hrs hematoma mostly hyperintense TL & T2 image.

CT Scan

- If unable to get MRI
- Non-contrast CT or CT myelography
- Hematoma visualized as biconvex shaped hyperdense lesion within spinal canal adjacent to vertebral body
- Well demarcated & separate from spinal canal

Treatment

- Spinal epidural hematoma is Surgical Emergency
 - Postop neurologic function related to preop exam and time to decompression
 - Delays to decompression can lead to permanent neurologic sequelae
 - Full recovery within 72 hrs is rare
 - Pts managed conservatively (non-operatively) 2nd to wild symptoms require
 - Serial exams
 - May receive Desamethasone


© 2023 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

- Open Fractures
 - Frequently check pules
 - Frequently check sensation/motor
 - Tetanus status "don't know gets a booster" TDap
 - Circumstances
 - Dirty wounds need special attention
 - Farm-Water-Work environments
 - Amount & duration of contamination
 - Prior ABX
 - Travel time

- Pay attention to wound Size
 - Indication of injury energy
 - High energy leads to more damage
 - High energy think compartment syndrome
 - Hand
 - Forearm
 - Thigh/Gluteal
 - Low Leg
 - Foot
 - High energy think associated Injuries

- Pay attention to wound Size
 - Indication of injury energy
 - High energy leads to more damage
 - High energy think compartment syndrome
 - High energy think associated Injuries
 - Assess Motor & Sensory
 - Meticulous documentation exam findings

EXTREMITY OPEN FRACTURES

- Lower Extremity Open Fractures
 - Increased risk infections
 - Compartment Injuries
 - Vascular Injuries

Type	Characteristics
I	Puncture wound <1cm Minimal contamination Minimal soft tissue damage
II	Laceration >1cm but <10cm Moderate soft tissue damage Adequate bone coverage Minimal comminution
IIIA	Laceration > 10cm Extensive soft tissue damage Adequate bone coverage Segmental/severely comminuted fractures or heavily contaminated wounds
III B	As a Gustilo type IIIA injury, but with periosteal stripping and bone exposure
III C	Any open fracture with vascular injury requiring repair

- Upper Extremity Open Fractures
 - Smaller wounds
 - Compartment Injuries
 - Less Likely to get infection

Table 9.1 Classification of compound hand lesions (adapted from Tulipan and Ilyas)³

Location		Modifiers	
Type I	Phalanx	A	Primary soft tissue coverage not possible
Type II	Metacarpal	В	Frank contamination
Type III	Carpus	C	Avascularity requiring revascularization

The classification proposed by Tulipan and Ilyas is more reasonable for use in hand traumas, even if some mixed complex injuries involving metacarpal and digits or multiple fingers might be difficult to classify.

Antibiotic Coverage

- Cover for Gram + organisms <2 hours
- Cefazolin most common
 - <50kg: 1g IV q 6-8 hrs</p>
 - 50-100kg: 2g IV q 6-8 hrs
 - >100kg: 3g IV q 6-8 hrs
 - PCN allergy- Clindamycin 900mg IV q 8 hr
 - Continue for 48hrs or 24 hours after wound coverage/closure

- Grade 1 Cefazolin popular choice
- Grade 2- Cefazolin +/- Aminoglycoside
 Gentamicin 5mg/kg or Tobramycin 1mg/kg
- Grade 3 Cefazolin +Aminoglycoside
 - Gentamicin 5mg/kg or Tobramycin 1mg/kg
 - High contamination potential
 - Lake/pond/farm
 - Anaerobic organisms- high dose PCN

- Increased pressure in confined anatomic space that can irreversibly damage tissue
 - Tibial Fracture most common
 - Forearm Fx 2nd most common
 - Hand/Foot Crush injuries
- Cause-
 - Expanding Volume: traumatic tissue injury in confined space with bleeding/edema
 - Blunt trauma, crush injury, closed fracture
 - Revascularization edema, bleeding disorder
 - Burns
 - Drug overdose
 - Infections
 - Tight splints/cast/bandages

Acute Compartment Syndrome is a CLINICAL diagnosis
Acute Compartment Syndrome = Surgical Emergency

☐ Arterial line

- □ 16 18 ga. Needle (5-19 mm Hg higher)
- ■transducer
- monitor

Delta pressure: Diastolic BP minus intracompartmental pressure results:

10-<30 mm needs admitted and serial compartment checks

30mm needs urgent surgical fasciotomy

=Delta pressure < 30mmHg indication for acute fasciotomy

- Measure Compartment Pressures
 - Initial pressure measurement in EL
- Needle (Stic) manometer/[STRYKER]
 - Hand-held device that utilizes a needle to assess pressure in compartment
 - Delta pressure: Diastolic BP minus intracompartimential pressure results:
 - 10-<30 mm needs admitted and serial compartment checks
 - > 30mm needs urgent surgical fasciotomy

Acute Compartment Syndrome is a CLINICAL diagnosis
Acute Compartment Syndrome = Surgical Emergency

- Treatment:
 - Recognize possibility of compartment syndrome
 - Labs:
 - Creatine phosphokinase (CPK) muscle breakdown [ischemia-tissue damage Rhabdomyolysis
 - Rhabdomyolysis renal function, urine myoglobin, U/A
 - Document neuro/vascular status frequently
 - Admit patient for monitoring
 - Serial Compartment Pressure measurements

Acute Compartment Syndrome is a CLINICAL diagnosis

Acute Compartment Syndrome = Surgical Emergency

Treatment:

- Surgery < 6-8 hours optimal time for fascing my & to preserve tissue
- Surgery > 12-36 hours tissue damage non-reversable, increased risk for infection, limb loss, mortality
- Fasciotomy:
 - Release compartment(s) pressure(s)
 - iWV vs. Skin grafting needed to close wounds at later date
 - May need 2nd surgery to assess tissues and for debridement of devitalized tissue
- Monitor for signs of infection
- Monitor urine for myoglobinuria 2nd to muscle tissue ischemia

Compartmen	Contents			
Thigh - anterior	anterior Muscles: sartorius, quadriceps (rectus femoris, vastus lateralis, vastus intermedius, vastus me Femoral nerve Saphenous nerve			
Thigh - posterior	Muscles: biceps femoris, semitendinosus, semimembranosus Sciatic nerve			
Thigh - medial	Muscles: gracilis, adductor longus, adductor brevis, adductor magnus Obturator nerve			
Leg - anterior	Muscles: tibialis anterior, extensor hallucis longus, extensor digitorum longus, peroneus tertius Deep peroneal nerve			
Leg - lateral	Muscles: fibularis longus, fibularis brevis Superficial peroneal nerve			
Leg - deep posterior	Muscles: popliteus, flexor hallucis longus, flexor digitorum longus, tibialis posterior Tibial nerve			
Leg - superficial posterior	Muscles: gastrocnemius, soleus, plantaris			
Arm - anterior	Muscles: biceps brachil, brachialis, coracobrachialis Ulnar nerve Median nerve			
Arm - posterior Muscles: triceps brachii, anconeus Radial nerve				
Forearm - deep and superficial volar	Muscles: superficial (flexor carpi radialis, palmaris longus, flexor carpi ulnaris, pronator teres, flexor digitorum superficialis); deep (flexor digitorum profundus, flexor pollicis longus, pronator quadratus) Ulnar nerve Median nerve			
orearm - dorsal	Muscles: brachioradialis, extensor carpi radialis longus, extensor carpi radialis brevis, extensor carpi ulnaris, extensor digitorum, extensor digiti minimi, abductor pollicis longus, extensor pollicis brevis, extensor pollicis longus, extensor indicis, supinator, anconeus			
	Important compartment syndrome findings:			
in is the most importa	int finding. Any pain with passive stretch is worrisome.			
lpate for tender and ter	se compartments			
te findings can include r rves in the involved com	notor deficits involving the muscles of the involved compartment and sensory deficits involving the partment			

9/20/2021 Acute compartment syndrome of the extremities - UpToDate Muscle compartments of the foot INTEROSSEOUS COMPARTMENT Interosseous mm. CALCANEAL COMPARTMENT Adductor hallucis m. LATERAL COMPARTMENT MEDIAL COMPARTMENT **Abductor digiti** quinti m. Abductor hallucis m. Flexor digiti minimi m. Flexor hallucis brevis m. Flexor digitorum longus & brevis tendons, lumbricals SUPERFICIAL COMPARTMENT

Compartments of the foot:

- Interosseous (turqoise) Interosseus muscles, each in its own compartment.
- Calcaneal (pink) Flexor digitorum brevis, quadratus plantae and adductor hallucis.
- Lateral (green) Flexor digiti minimi and abductor digiti quinti.
- Medial (red) Abductor hallucis and flexor hallucis brevis muscles.
- Superficial (blue) Flexor digitorum brevis, lumbricals, flexor digitorum longus tendons.

Graphic 80232 Version 4.0

PELVIC RING INJURY

PELVIC RING INJURIES

 40% die from unstable pelvic ring injuries and hemodynamic instability is major contributor to that outcome

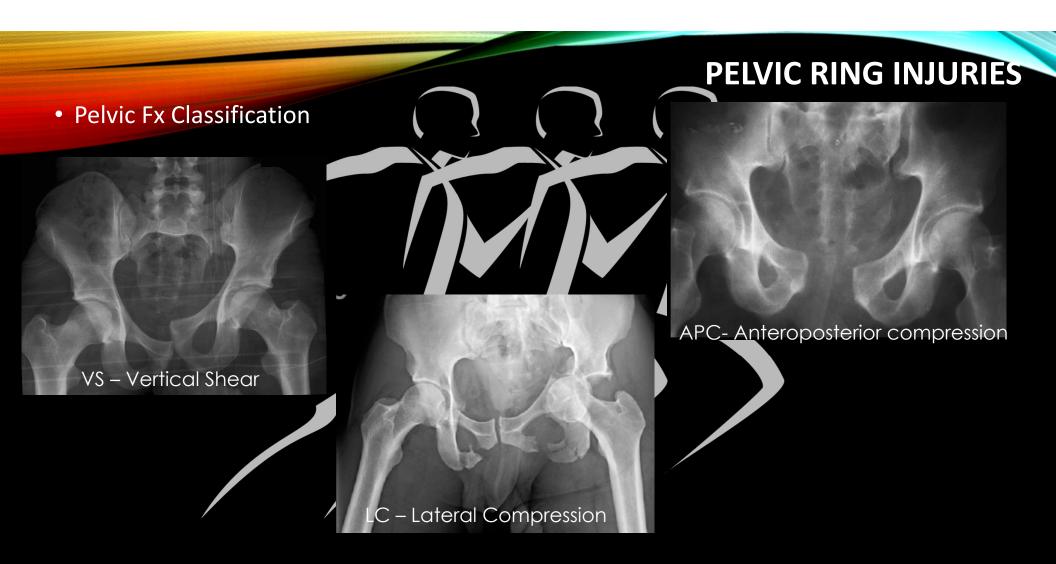
Pelvic ring injuries are markers of violent injury

- Hemorrhage
- CNS-Cardiothoracic-Abdominal & Genitourinary- Extremity trauma
- In "Open Book" pelvic ring Fx compression of the pelvisides on bleeding control
- Pelvic Radiographs provide assessment of deformity and instability & CT scan provides detailed posterior elements injury assessment

Assessment for Pelvic Ring injury

- Neurovascular status
- Asymmetry of pelvis and leg length inequalities
- Digital Rectal exam and manual Vagina exam-laceration open pelvic fx

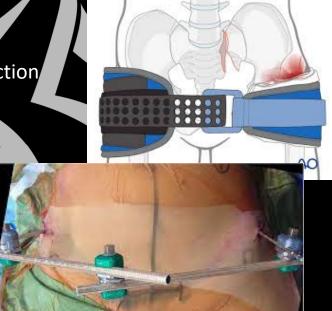
PELVIC RING INJURIES


Standard Imaging

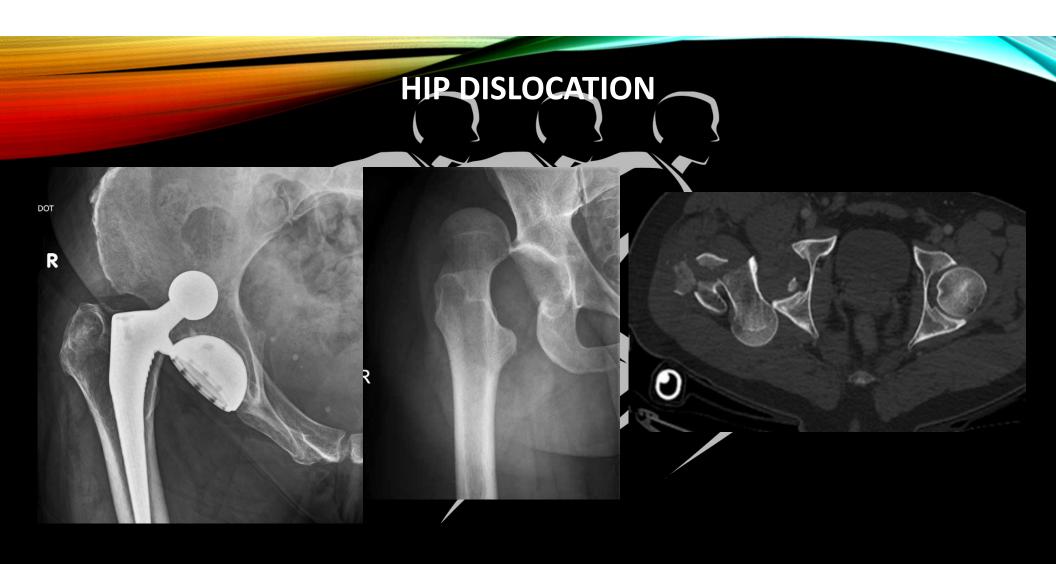
- Radiographs AP pelvis Inlet & Qutlet Views (Judet)
 - Cystogram, Retrograde Urethrogram,
 - Vertical displacement best seen on inlet/Qutlet views
- CT scan defines injury/to posterior reprice ring
 - Sacroiliac joint and Sacral injuries

Pelvic Fx instability is defined as

- Symphysis diastasis > 2.5cm
- Posterior Pelvis displacement >1cm
- Complete widening of the posterior St joint
- Neurologic Injury
- Pelvic asymmetry w/ leg length inequality



PELVIC RING INJURIES


TREATMENT

- "It takes a village to run a trauma code"
- Fluid Resuscitation IVF, Albumin Blood (FAST, CT angiogram)
- Pelvic Compression Sheet-Binder-Ex Fix
 - Binder/Sheet: Foley & "grams"
 - Monitor Urine output, Base Deficits, Hgb & coagulation function
- Radiographs Pelvic Xray and CT scan
- Hemodynamic stability KEY
- UNSTABLE consider embolization or Ex Lap with packing
- SICU management
- Definitive surgery when pt stable for surgery

HIP DISLOCATON INJURIES

Hip Dislocation

- High energy
- Blood supply or Articular Cartidge injuries
- 2 attempts then let some une eker
- Native or Prosthetic
 - Prosthetic
 - Easier to reduce but have to focus on components of THA
 - Check the Femoral Head and the Acetabular cup
 - Hip ABD pillow of Hip ABD brace "Revision THA"
 - Native
 - Usually associated with posterior wall aceta with fx and or femoral head fx
 - Need good Xray image of ace abulam of CT soan prior to reduction
 - Reductions are sometimes difficult due to FB or Soft tissue blocking the Acetabulum
 - Will need Skeletal traction if unable to maintain the reduction
 - Surgical Fixation

HIP DISLOCATION

KNEE DISLOCATION

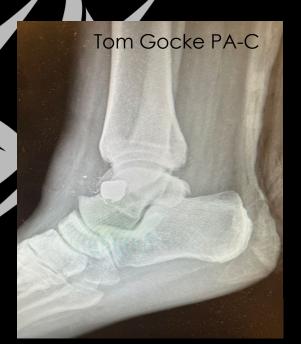
ANKLE FX/DISLOCATION

© 2023 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

KNEE DISLOCATION

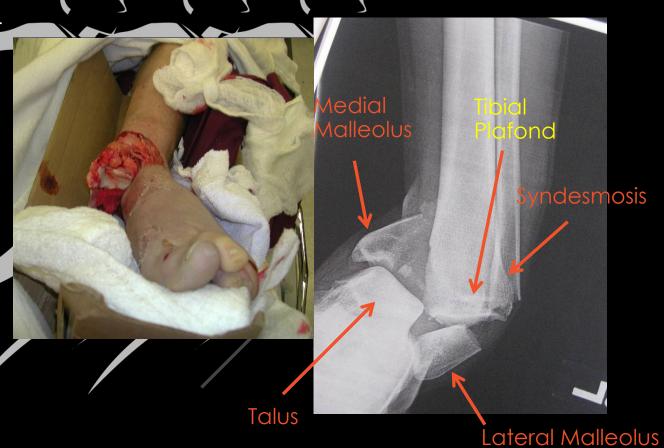
Knee dislocation

- High energy Injury can be limb threatening due to vascular injury
 - Intoxicated and Obese major contributing factors
 - Multiple Ligament injuries SM MS NOT a Joint Stabilized
 - Pulses present check Ankle-Brachial Index -> 0.9 good indicator of arterial supply
 - Irregular pulse compared to contralateral side consider CT angiogram
 - Reduction and immobilization Ex Fix or knee immobilizer
 - MRI Scan for preop ligament injury mapping
 - Timing of surgical intervention


RADIOGRAPHS- KNEE DISLOCATION

© 2023 ORTHOPAEDIC EDUCATIONAL SERVICES, INC ALL RIGHTS RESERVED

KNEE DISLOCATION


- Talar Fracture or sub-talar dislocation injury
 - Blood supply tenuous to talus
 - Fx displacement or joint dislocation compromises skin
 - Skin compromise requires urgent reduction

ANKLE FRACTURE-DISLOCATION

 Associated with Bimalleolar or Trimalleolar ankle fractures

- Talus and foot translated completely out of mort se
- Obvious deformity to ankle and foot
- Open vs. Closed
- Play close attention to pre & post reduction new and vascular exams

© 2023 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

REDUCTION AS SOON AS POSSIBLE PROTECTS SKIN

© 2023 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

ANKLE EX/DISLOCATION

- Knee flexion relaxes effects of Gastro
 - Water ski traction
 - Reduction
 - Dangle ankle over the edge of the table
- Hold reduction while splint applied and Drig
 - Hold Big Toe and Internal rotation
 - Posterior & Sugar-tong/stirrup splint
- Check Neurovascular frequently
- Post reduction x-ray

TOXIC SYNOVITIS v. SEPTIC ARTHRITIS – PEDS OPEN FRACTURES – LOWER EXTREMITY OPEN FRACTURES – UPPER EXTREMITY INFECTED JOINT NECROTIZING FASCIITIS

Septic Arthritis vs. Toxic Synovitis

- Most frequently occurs in children ages 3-10 years old³
 - Mean age 4.7 years old³
 - Agitated or fussy
 - Hip ABD- Flexed & Ext Rotated enlarges hip joint copsule
 - Males twice as common as Females
 - Similar symptoms with progressive hip and grain pain

Exact cause is unknown

URI, bacterial infection, trauma, allergic reaction

Clinically manifest as pain in the affected area

- Toxic Synovitist self-limited and will resolve within 24 to 48 hours
- Septic Arthritis: gets worse & associated with other systemic symptoms

LABORATORY FINDINGS

- CBC, ESR & CRP
- Hip aspiration: Gram stain, Cell count, cultures
- All children with an irritable hip without a clearly identified source who have an erythrocyte section rate of more than 20 mm/hr or a temperature of more than 99.55 should be considered for diagnostic hip aspiration?

KOCHER CRITERIA

- Developed in 1999 by Mininder \$. Kocher, M.D., M.P.H., to aid in evaluating a child's
 presentation that would allow for a more accurate differentiation of these two diseases³
- Caird and colleagues 2006, investigated CRP levels in children for whom joint aspiration was performed⁵
- They found that a CRP >20 mg/L, as well as the Kocher Criteria being present had a predicted probability of 98%⁵

Kocher Criteria	No (0 points)	Yes (1 point)
Non-Weight Bearing		
Temp > 38.5° C (101.3° F)		
ESR > 40 mm/hr		
WBC >12,000 cells/mm ³		

© 2023 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

KOCHER CRITERIA

- Each point is associated with a likelihood of the child having septic arthritis.
 Based on his paper, the likelihood of a child with 0 of the Kocher Criteria having septic arthritis is 0.2%
- This percentage increases with each additional point up to 99% likelihood at 4 points³

Points	Likelihood of Septic Arthritis
0	0.20%
1	3%
2	40%
3	93%
4	99%

© 2023 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

BACTERIAL/SEPTIC ARTHRITIS

Staphylococcus aureus most common organism in septic arthritis and osteomyelitis

Large wt-bearing joints most commonly affected

ABX choice based on Gram stain, underlying conditions and clinical presentation

BACTERIAL SEPTIC ARTHRITIS

- Predisposing Factors to Joint infection
 - Age: > 80 adults, < 5 kids
 - Undying medical conditions (HIV, DM, ETOH, Cirrhosis, renal dx, bad choices)
 - Immunosuppression: Steroids, Chemotherapy, neoplasm, biologics [DMARDS]
 - Total Joint Arthroplasty
- Common Organisms
 - Staphylococcus species
 - Staph aureus most common [45-65%]
 - Group A/B Streptococcus (Grp B more common elderly)
 - Polymicrobial Think patient underlying conditions

BACTERIAL SEPTIC ARTHRITIS

Clinical Presentation

- Usually abrupt v, gradual onset, swelling, redness, warmth and isolated joint
- Chills, rigors 20-60% patients
- Fever: <u>></u>101.5 **f** (38C)
- Large joints common
- Painful AROM/PROM affected joint(s)
- Think about hematogenous spread in older folks

Physical Exam - "20,000-foot view"

BACTERIAL SEPTIC ARTHRITIS

- Diagnostic modalities
 - Imaging: Radiographs Ultra-sound CT/MRI w & w/o contrast
 - Laboratory studies
 - Blood: CBC, Glucose, CRP, ESR, [procalcitonin marginally helpful]
 - Blood Cultures, other diagnostic tests
 - Joint Aspiration
 - Gram stain, Cell count, Crystals, & Cultures [aerobes, anaerobes, fungus, AFB]
 - Gram stain 75% gram-positive cocci, 50% gram-negative bacilli
 - Polymorphic nucleated (PMN) cells—50,000 think infection (total joint > 10,000)
 - Look at %/WBC

Table 38-5. Nongonococcal Septic Arthritis: Antibiotic Choice for Specific Organisms			
ORGANISM	ANTIBIOTIC OF CHOICE	ALTERNATIVES	
Staphylococcus aureus	Nafcillin	Cefazolin Vancomycin Clindamycin	
Methicillin-resistant <i>S. aureus</i> (MRSA)	Vancomycin	Deptomycin Linezolid Clindamycin	
Streptococcus pyogenes or Strepto- coccus pneumonia	Penicillin or nafcillin	Cefazolin Vancomycin Clindamycin	
Enterococcus	Ampicillin plus gentamicin	Vancomycin plus aminoglycoside	
Haemophilus influenzae	Ampicillin	Third-generation cephalosporin Cefuroxime Chloramphenicol	
Enterobacteriaceae	Third-generation cephalosporin or levofloxacin	Imipenem Aztreonam Ampicillin Aminoglycoside (not alone)	
Pseudomonas	Aminoglycoside plus antipseudo- monal penicillin	Aminoglycoside plus ceftazidime, imipenem, or aztreonam	

Rare bacterial infection – spreads quickly

NECROTIZING FASCIITIS

- Strep necrotizing fasciitis trauma, surgery, minor injuries
- Superinfection from Varicella lesions
- Organism
 - Group A strep GAS
 - Strep pyogenes/
 - Vibro Vulnif
- Risk Factors
 - Immunocompromised
 - DM
 - PVD
 - Neoplasm
 - Cirrhosis/
 - Kidney dz.
 - Corticosteroid use

Suspicion

- Pai
- Skin redness
- Sensory changes
- SubQ crepitation
 - Bullae
- "skin burn appearance"

© 2023 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED.

NECROTIZING FASCIITIS

Clinical presentation

- Mostly extremities
- Pain- extends beyond lesions
- Erythema redness
- Brawny edema skin slough
- Bullae
- Necrotic eschar 3rd degree burns
- Fever/ Chills

Treatment

- Recognize
- Labs
- Aggressive ABX high dose Pen/Amp/Cleo
- Surgical debridement/fasciotomies
- Medical Support

Varicella super infection

- Cutáneous
- 3.4 days after onset develop high fever & appears toxic Rapid decline

MEDICAL PROBLEMS

AMS/Stroke
Chest Pain/MI
Atrial Fibrillation (Afib)
Pulmonary Embolism &
Fat Embolism
Hypotension
Hypertension

© 2023 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED.

AMS/STROKE

- Common Occurrence for hospitalized pts
 - Recognize early signs AMS
 - Underlying causes
 - UTI
 - Medications BEERS List
 - Change surroundings
 - Embolic/Hemorrhagic stroke
- Changes Mental Status
 - Acute delirium
 - Acute confusion impaired attention/cognition hours/days
 - Sleep-Wake disturbance
 - Sundowning progression worsening, More persistent at night
 - Medication interaction BEERS List

Common Causes AMS/STROKE

- Young adults Toxic ingestions or Trauma
- Older/elderly
 - Stroke
 - Infection
 - Drug-Drug interactions
 - Living Environment
 - 10-25% Elderly hospitalized will present with Delir tunion admission
- Metabolic
 - Hypoxia Hypoglycer : adverse effect on CNS contributing to delirium
- Cardiovascular
 - Malignant ar hythmias
 - Hypotension
 - Adverse effects on Cerebral profusion pressure

AMS/STROKE

Evaluation

- ABC's, GCS < 8 protect airway
- Hemodynamic support
- Vitals
- EKG
- CXR
- Labs: CBC, BMP, BNP, Flucose, prection
- Mini-Mental Status Exam
- Neuro exam
 - Stat Head CT

TABLE 38-2 Glasgow Coma Scale BEHAVIOR RESPONSE SCORE Eye opening Spontaneously To speech response To pain No response Best verbal Oriented to time, place, and person 5 Confused response Inappropriate words Incomprehensible sounds No response Obeys commands Best motor Moves to localized pain response Flexion withdrawal from pain Abnormal flexion (decorticate) Abnormal extension (decerebrate) No response Total score: Best response 15 Comatose client 8 or less Totally unresponsive 3

TREATMENT AMS/STROKE

Treatment of symptomatology

Naloxone – Glucose - Thiamine

- ABCs
- Cardiovascular intervention
 - Pacing
 - Treat arrhythmia
 - Volume replacement
- Respiratory
 - Supplemental oxygen
 - Pulmonary toilet
- Sepsis
- Neurological conditions/Trauma

Acutely delirious treatment

Environmental changes

- Lighting
- Sleep Hygiene
- Activity changes
 - Psychosocial support
- Medication
 - Haloperdol 5-10 mg PO/IM/IV
 - Lorazepam 1-2 mg PO/IM/IV
 - Avoid Benzodiazepines

CHEST PAIN/AMI

- Chest Pain
 - Common complaint
 - Broad differential dx
 - Life –Threatening causes most important
- PMHx
 - Hx CAD
 - Stents Valves-CABG
 - HF
 - AMI hx

History

Onset

- Location
- **-** Duration
- Character
- Aggravate/Alleviate
- Radiation

CHEST PAIN/AMI

- Evaluation
 - Neuro
 - Heart
 - Lung
- Diagnostics
 - Stat EKG
 - Stat labs: CBC, BMP, Serial Troponin
 - Rapid Response
 - Cardiology/Medicine Consults

/Treatment/

ACLS

MONA" - Morphine

Oxygen

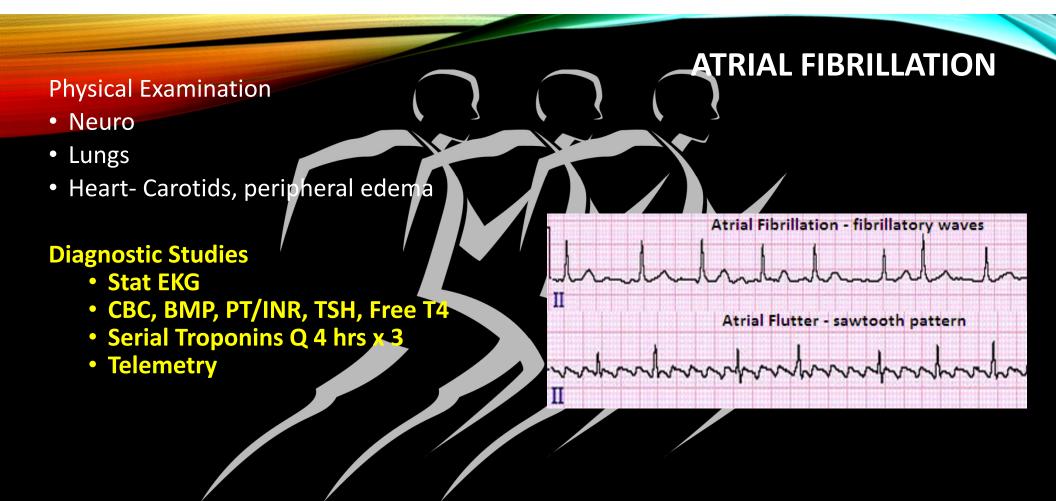
- Nitro

- Aspirin

What is Atrial Fibrillation

Atrial fibrillation (A-fib) is an irregular and often very tapid heart rhythm (arrhythmia) that can lead to blood clots in the heart.

A-fib increases the risk of stroke, heart failure and other heart-relater complications.


Causes Atrial Fibrillation

- HTN/CAD/CHF/Valve dz
- Hyperthyroidism
- Obesity
- Obstructive Sleep Apnea/COPD/Pulmonary edema
- ETOH/Drugs

Symptoms

- Asymptomatic
- History of Affb
- Irregular w or w/o rapid HR [RVR]
- Dizziness
- Syncope/near syncope

ATRIAL FIBRILLATION

- Treatment
 - Symptomatic Cardioversion
 - Asymptomatic
 - Fluid resuscitation [hypovolemic]
 - Rate Control Lopressor V or PO
 - < 120 try vagal maneuvers /PO Metoprolol (Lopressor) 25mg
 - > 120 or fail Vagal or PO Metoprolol: IV 2.5/5mg Slow IV push

Rivaro

n (Xarelt

- Anticoagulation
 - Direct Oral Anticoagaints (DOM)
 - Warfarin
- Cardiology Consult
- Transfer to Stepdown or ICU floor
- Transfer to Medicine Service

Apixaban (Eliquis)

- Most PE's originate as LE DVT's
- Third most common type of Capitovascula
- Male > Female
- Virchow's Triad
 - Hypercoagulability
 - Venous stasis
 - Endothelial Injury
- Genetic risk factors
 - Factor V Leiden mutation
 - Prothrombin gene mutation
 - Protein C & Protein S deficiency

<u>Acquired risks</u>

Immobilization

Extremity Surgery

Malignancy

Catheters

Obesity

Pregnancy

Smoking

Oral Contraceptives

Pathophysiology

- PE are multiple, small & lower lobes & both lungs involved.
- Large embolus blocks Pulmonary artery (Saddle embolus) Devastating outcomes
- Smaller emboli block peripheral arteries
- Increased Pulmonary vascular resistance
- Right Ventricular (RV) enlargement
- Vasospasm stimulates respiratory drive causing hypocapnia and respiratory Alkalosis
- RV failure to acute pressure overload is primary cause of death failure

History

- Hypotensive episode intra-op
- Most common symptoms of PE include:
 - Dyspnea-
 - sudden onset vs gradual decline
 - O2 sat changes
 - Tachycardia
 - Pleuritic chest pain
 - Small micro-emboli
 - Right heart failure
 - AMI/Aortic dissection
 - Cough
 - Hemoptysis/
 - Presyncope & syncope

Tackypnea & Tachycardia

- Decreased Lung sounds / Rales
- LE edema/calf pain

Physical Examination

- Pulmonary HTN/Right Heart Failure
 - Neck vein distension
 - Parasternal lift
 - 3rd heart sound cyanosis
 - Shock
- EKG
 - Tachycardia (RBBB)
 - New onset Afib

LABS:

PULMONARY EMBOLISM

- CBC
- ABG/VBG: respiratory alkalosis & hypocaphia
- Brain Natriuretic Peptide (BNP), Elevated w/RV stretch/overload
- Troponin
- D-Dimer: high negative predictive value
- EKG: Tachycardia & non-specific ST-T wave changes (RBBB rate late sign)
 - New onset Afib (RVR)
- CXR Rule out Pneumothorax, tamponade, infiltrate, fluid
- Chest CT angiography PE protectol
 - Prospective Investigation of Pulmonary Embolism Dx (PIOPED) II
 - Sensitivity 83%, specificity 96% BE diagnosis
 - Contrast Allergy or Rénal impairment (eGFR <30) decisions
 - Alternative study V-Q scan

Wells Criteria predictive of PE

- Clinical Symptoms of DVT
- Other Dx less likely than PE 3
- Heart rate > 100 1.5
- Immobilization > 3 days or surgery in last 4 wks – 1.5
- Hx DVT/PE 1.5
- Hemoptysis 1
- Malignancy 1

Wells Criteria Score

- High >6
- Moderate 2-6
- Low < 2

Modified Wells Criteria Score

- <u>PE likely > 4</u>
- PE unlikely <4

Treatment

- Stable vs. Unstable
- Supportive measures
- O2 supplementation
- Anticoagulation
 - LMWH and Fondaparinux (Arixtra)
 - Less chance major bleeding, HIT
 - Unfractionated Heparin (UFH)
 - Hemodynamic unstable
 - Need for Reperfusion therapy,
 - Renal Impairment

Stable Hemodynamic

- Supportive care
- Imaging studies
 - Low probability 24 hrs
 - Moderate 4 hrs
- Treatment: 3-6 months
 - Unprovoked longer Tx
 - LMWH/Fondaparinux
 - Oral Agents

Apixaban/Rivaroxaban/Warfarin

Unstable hemodynamic

- Supportive Care/Telemetry/LABS/EKG
- Stat Imaging
- Reperfusion Therapy
- UFH/LMWH/DOAC/Warfarin

FAT EMBOLISM

Fat Embolism & Fat Embolism Syndrome

- Release of fat droplets into systemic circulation after trauma
- Hormonal Change release
- Disrupts microcirculation resulting in systemic inflammatory response syndrome
- Fat Emboli syndrome is a RARE clinical consequence of a Fat Embolism
- Risk Factors
 - More Long Bone Fx (Trauma) mur fractures higher r
 - Prolonged NON-op treatment long bone fxs trighest rise
 - Tissue trauma/Crush Injuries
 - Severely burned patient >50% Indy surface
- Non-orthopaedic cause
 - Acute/chronic pancreatitis
 - Liposuction
 - Bone marrow transplant

FAT EMBOLISM

Clinical Presentation

- Onset symptoms 24-72 brs after long bone fx or pelvic fx
- Nausea-Malaise-Weakness-Respiratory Headache
- Pulmonary distress ARDS-like symptoms, Tachypnea, low Q2 stats
- Mental Status Changes: agitation restlessness (Hypoxia
- Petechial rash
 - Ocular transient-50%
 - Reddish-brown spots in Upper extremities Axilla
- Fever > 38.5
- Tachycardia > 110

Diagnostic

FAT EMBOLISM

- Onset symptoms 24-72 hrs after long bone fx or pelvic fx
- STAT portable CXR
 - infiltrates,
 - Pulmonary edema
- Telemetry & O2 sat monitoring
- Labs
 - CBC, platelets, fibrinogen
 - Anemia Thrombocytopenia low fibrinogen
- Spiral Chest CT to rule out PE
- Non-contrast Head CT—AMS

CLIMICAL DIAGNOSIS

Treatment FAT EMBOLISM

- Supportive Care
 - Preserve/Prevent End organ damage
 - Preserve hemodynamic stability
 - Transfuse PRBC
 - Albumin restores intravascular volume & binds free fatty acids
 - DVT prophylaxis and compression devices
- Continuous O2 monitoring (Non-rebreather mask 100% O2)
- Cerebral Edema: Mannitol Hypertonic Saline
- Medicine/Pulmonary consults: Early v. Rapid Response team
- SICU/MICU transfer

CLINICAL DIAGNOSIS

Blood Pressure regulated by:

HYPOTENSION

- Cardiac output & peripheral vascular resistance
 - Sympathetic NS- Increase HR & pressure w/ constriction
 - Parasympathetic NS Lowers HR & pressure by lower HR and Dilate
- Orthostatic Hypotension = Flurted autonomic response, medications and/or hypovolemia
 - Medications: Beta blockers, Ca Channel Blockers Diuretics
 - Disease: Arrhythmias, Valvular injury, Heart Fallur, Volume loss, Cardiac Tamponade, Stroke, Pulmonary, Embolism
- Hypotension: decrease in systemic blood pressure
 - Relatively benign condition
 - BP < 90/6, [SBP < 90, DBP < 40, MAP < 65
 - Orthostatic BP
 - Decrease SBP 20mmHg /DBP 10mmHg position change
 - Increase HR 10 beats/min position change

Examination

- Mostly asymptomatic
- Symptomatic
 - Chest pain-SOB-Irregular HR
 - Fever > 101.5
 - Diarrhea-vomiting
 - Acute allergid reaction

Treatment

- Recognize cause
- IVF resuscitation
- PRBC transfusion
- Correct/Treat
 - Cardiogenic
 - Respiratory
 - Allergic
- Monitor Urine output 0.5-1.0 ml/Kg per hr
- Vasopressors [Map < 65 & symptomatic]
- Antibiotic Therapy for sepsis

HYPOTENSION

<u>Diagnostic studies</u>

CAC

BMP

VBQ

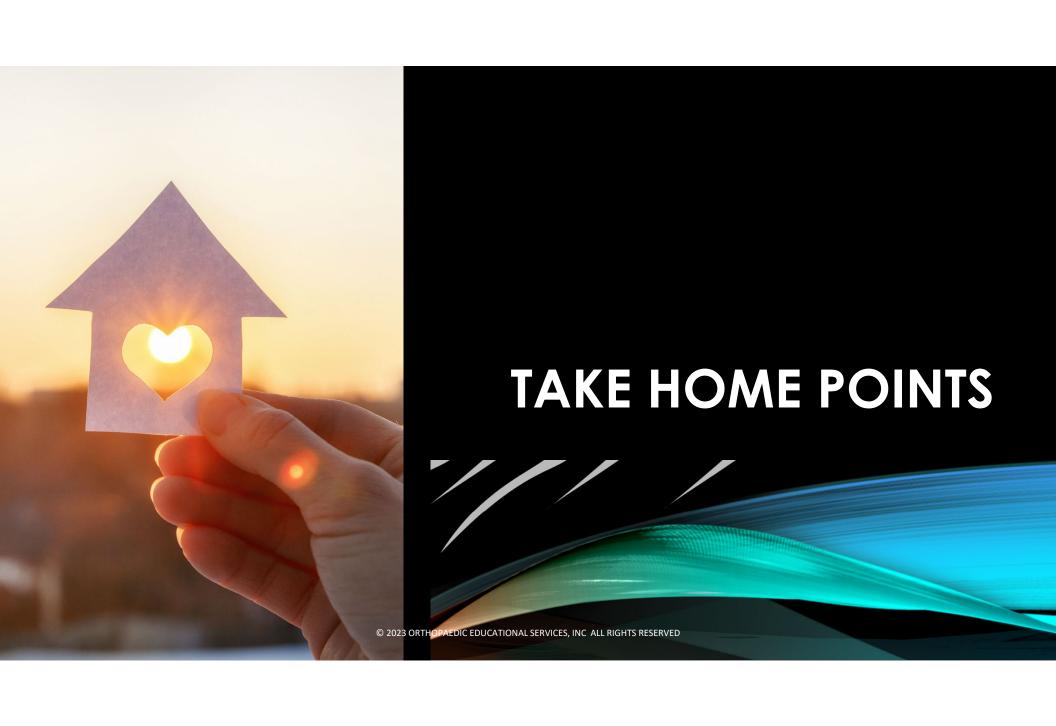
TSH, Free T4

Cortisol levels

EKG

TTE

Stat Chest CT –PE protocol


lood & Urine cultures

CXR

FAST exam

Lopressor is for rate control not HTN

TAKE HOME POINTS

- Surgical Emergency = Spinal infection (Hematoma/Cauda Equina syndrome)
- Surgical Emergency Acute Compartment Syndrome
- Compartment syntrome not exclusive to the Lower leg
- Pain & Suspicion are the ONLY DX signs in Compartment syndrome.
- Chest Pain AMS AFIB = gets a workup
- Pulmonary Embolism Spiral CHEST CT w/ Angiography
 - Don't forget about Fat Embolism
- Pelvis Ring Fx = Binder goes around the Trochanters
- Septic Arthritis vs Toxic Synovitis Kocher Criteria is the Key to more accurate Dx

- Wenz JF, Orthopaedic Surgery Resident Survival Guide, Johns Hopkins University, June 2007, accessed March 24, 2023
- Vyas V, Goyal A. Acute Pulmonary Embolism. [Updated 2022 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NB/560551/ accessed March 25, 2023
- Sharma S, Hashmi MF, Bhattacharya PT. Hypotension. [Updated 2023 Feb 19]. In: StatPearls [Internet]. Treasure Island
 (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499961/, accessed March 25, 2023
- Patti L, Gupta M. Change In Mental Status. [Updated 2022 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441973, accessed March 25, 2023
- Adeyinka A, Pierre L. Fat Embolism. [Updated 2022 Oct 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.njh.gov/books/NBK499885/, accessed March 25, 2023
- Johnson K, Ghassemzadeh S, Chest Pain. [Updated 2022 Dec 14]. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nib.gov/books/NPK470557/, accessed March 25, 2023

- Schmidt AK, Anglen J, Nana JD, Varecka TF, Adult Trauma: Getting Through the Night, JBJS 2010;9(2):490-505
- Damage Control Orthopaedics: Evolving Concepts in the Treatment of patients Who Have Sustained Orthopaedic Trauma, JBJS,2005;87(2):434-449
- Coe, Marcus P. MD, MS; Osborn, Colonel Patrick M. MD; Schmidt, Andrew H. MD. AAOS Clinical Practice Guideline: Management of Acute Compartment Syndrome. Journal of the American Academy of Orthopaedic Surgeons 29(1):p e1-e4, January 1, 2021. | DOI: 10.5435/JAAOS-D-19-00326
- Al-Mutair, Abdulaziz BHSc, MBChB, FRCSC; Bednar, Drew A. MD, FRCSC. Spinal Epidural Hematoma. American Academy of Orthopaedic Surgeon 18(8):p 494-502, August 2010.
- Chien C, Abrukin L, Spinal Epidural Hematoma CORE EM, https://coreem.net/core/spinal-epidural-hematoma/, Nov 2016, accessed April 10, 2023
- Gocke TV, Metacarpal Fractures: A review of Fractures Characteristics and Treatment Options, JBJS-JOPA 2023;11(1):e22-00018.
- Gocke TV, Tibia Fractures-Part 1, Orthopaedic Educational Services, Inc., https://orthoedu.com, March 2022, accessed March 12, 2023
- Colston, J., & Atkins, B. (2018). Bone and joint infection. Clinical Medicine, 18(2), 150-154 https://doi.org/10.7861/clinmedicine.18-2-150

- Gocke TV, Metacarpal Fractures: A review of Fracture Characteristics and Treatment Options, JBJS JOPA 2023;11(1):e22.00018
- Gocke TV, Hand and Finger Infections, Orthopaedic Educational Services, Inc., www.orthoedu.com, accessed May 9, 2023

- 1. Nouri A, Walmsley D, Pruszczynski B, Synder M, Transient synovitis of the hip: a comprehensive review. J Pediatr Orthop B, 2014 Jan;23(1):32-6.
- 2. Long B, Koyfman A, Gottlieb M. Evaluation and Management of Septic Arthritis and its Mimics in the Emergency Department. West J Emerg Med. 2019;20(2):331–341.
- 3. Kocher MS, Zurakowski D, Kasser JR. Differentiating between septic arthritis and transient synovitis of the hip in children: an evidence-based clinical prediction algorithm. J Bone Joint Surg Am. (1999)81 (12): 1662–70
- 4. Del Beccaro MA, Champoux AN, Bockers T, Mendelman PM. Septic arthritis versus transient synovitis of the hip: the value of screening laboratory tests. Ann Emerg Med. 1992 Dec;21(12):1418-22
- 5. Caird MS, Flynn JM, Leung YL, Millman JE, Ó'Italia JG, Dormans JP. Factorsdistinguishing septic arthritis from transient synovitis of the hip in children. A prospective study. J Bone Joint Surg Am. 2006 Jun;88(6):1251-7.