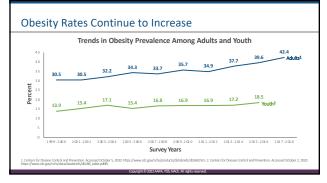
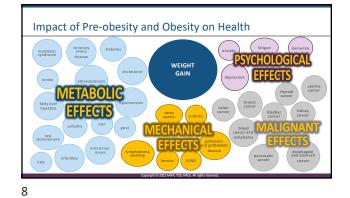
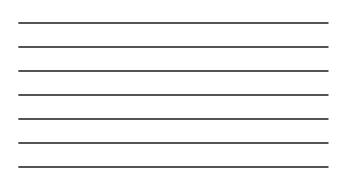

OBESITY MANAGEMENT IN PRIMARY CARE Chesity is a Complex Disease: Scope and Pathophysiology Christine Kessler MN, CNS, ANP-BC, BC-ADM, CDCT, FAANP Founder, Nurse Practitioner Metabolic Medicine Associates

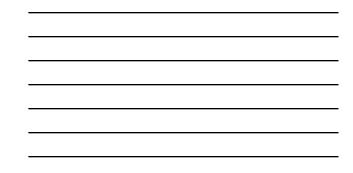
1

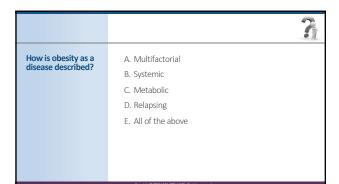

Disclosure Slide

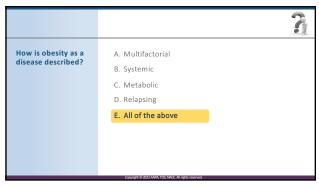
- NovoNordisk: advisory board for type 2 diabetes and speaker for obesity
- Clarion Brands: research consultant for probiotic use with antibiotics
 Acella Pharmaceuticals: speaker for desiccated thyroid extract



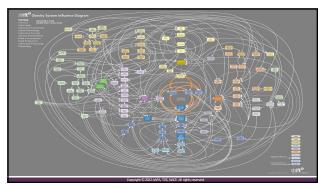


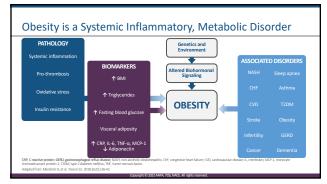

	BMI (kg/m²)	Disease Risk* (Relative to Normal Weight and WC ⁺)		
		Men ≤ 40 in Women ≤ 35 in	> 40 in > 35 in	
Underweight	<18.5	-	-	
Normal	18.5-24.9	-	-	
Overweight	25-29.9	Increased	High	
Class 1 Obesity	30-34.9	High	Very High	
Class 2 Obesity	35-39.9	Very High	Very High	
Class 3 Obesity	≥ 40	Extremely High	Extremely High	

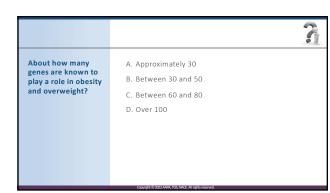


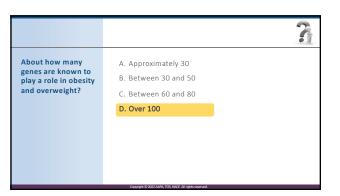












Genetic and Epigenetic Influences on Obesity Risk

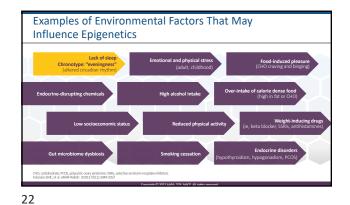
16

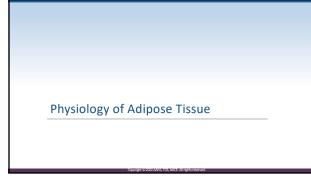
17

Genome-wide Association Studies (well over 100 known)					
Gene	Tissue expressed	Gene product	Role in energy balance		
MC4R	Adipocyte, hypothalamus, liver	Melanocortin 4 receptor	Appetite stimulation; monogenic cause of obesity		
ADRB3	Visceral adipose tissue	β3-adrenergic receptor	Regulates lipolysis		
PCSK1	Neuroendocrine cells (brain, pituitary, and adrenal glands)	Proprotein convertase 1	Conversion of hormones (including insulin) into metabolically active forms		
BDNF	Hypothalamus	Brain-derived neurotrophic factor	Appetite stimulation; regulated by MC4R signaling and nutritional state		
LCT	Intestinal epithelial cells	Lactase	Digestion of lactose		
MTNR1B	Nearly ubiquitous	Melantonin receptor 1B	Regulation of circadian rhythms		
TLR4	Adipocyte, macrophage	Toll-like receptor 4	Lipolysis, inflammatory reactions		
ENPP1	Nearly ubiquitous	Ecotnucleotide pyrophosphatase/ phosphodiesterase 1	Inhibits tyrosine kinase activity of the insulin receptor, downregulating insulin signaling and decreasing insulin sensitivity		
FGFR1	Adipose, hypothalamus	Fibroblast growth factor receptor 1	Hypothalamic regulation of food intake and physical activity		
LEP. LEPR	Adipocyte	Leptin, leptin receptor	Appetite inhibition		

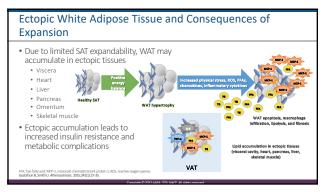
Summary of Genetic Obesity Risk Data

• DNA is **not** destiny

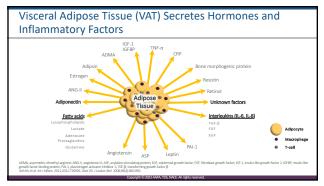

- Those with the *FTO* gene variant are 67% more likely to develop obesity
 But they have a 27% greater ability to achieve weight loss with regular exercise
- Approximately 43% of Americans have a high polygenic risk for obesity
 - But this genetic risk does not guarantee obesity
 - 16% 20% of those with very high polygenic obesity risk scores do not suffer from obesity
 - · However, high polygenic obesity risk may make it harder to lose unwanted weight
- There are also rare single gene (monogenic) variants that greatly increase obesity, especially in childhood, and make it nearly impossible to lose weight

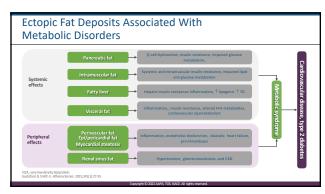

FTD; fat mass and obesity-associated. Thaker W; et al. Adolesc Med State Art Rev. 2017;28(2):379-405.

20

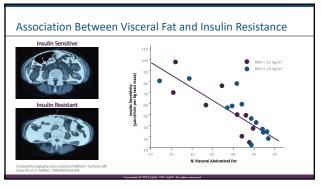

White Adipose Tissue (WAT)

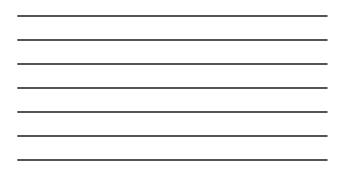
Main form of adipose tissue

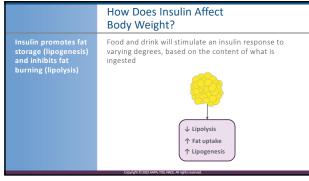

- Important endocrine organ that interacts with most other body organs
- Stores energy in the form of triglycerides
- An individual's fat mass is genetically set and maintained
- Normally found in subcutaneous adipose tissue (SAT) but can be found in ectopic locations (visceral and muscle)

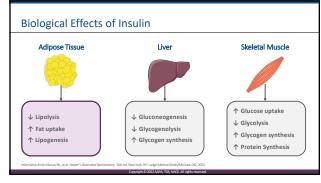

- White adipose tissue composed of:
 ~50% adipocytes
 ~50% other cells
 . *50% other cells
 . Preadjoocytes
 .Vacular, neural, and immune cells
 . Leukocytes
 . Leukocytes

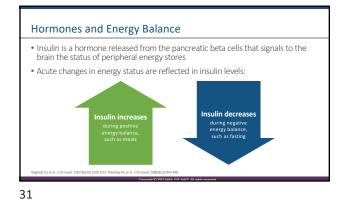
alerosis. 2015;241(1):27-35.

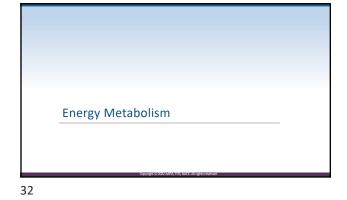


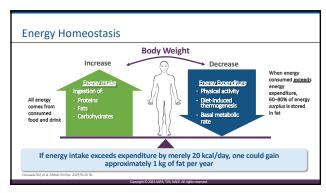


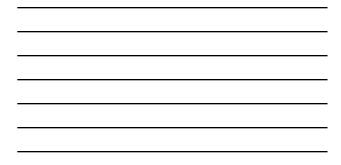


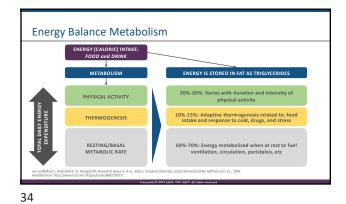


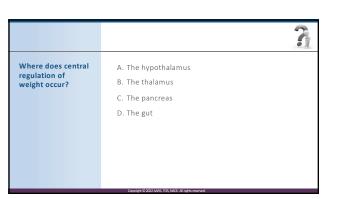


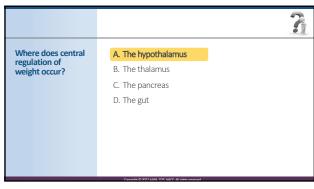


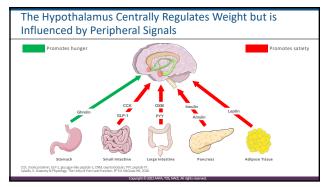


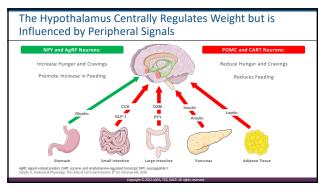


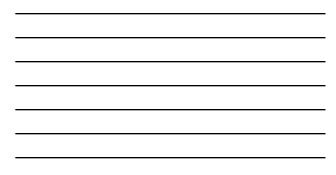


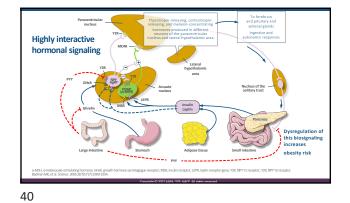


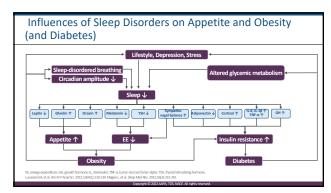


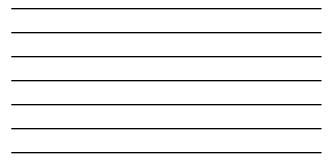




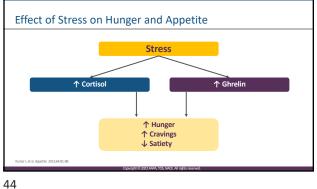


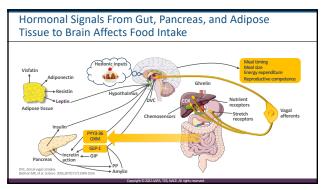


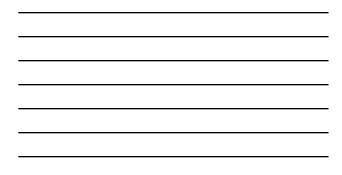




Impact of Sleep and Stress

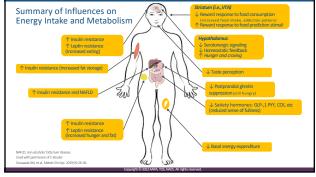


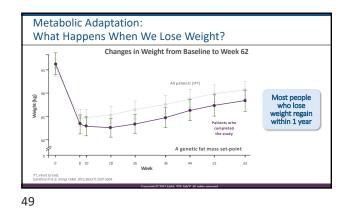

- Chronotype ("eveningness" vs "morningness") influences several physiologic and metabolic processes
- An evening tendency is related to higher BMI and obesity risk
- The relationship between chronotype and BMI appears to be mediated by inflammation levels
 - An evening tendency is associated with elevated inflammatory biomarkers (CRP, IL-6) and a greater cortisol stress response
 Increased cortisol and inflammatory responses correlate with increased BMI

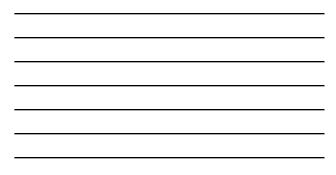

 - The greater the cortisol response, the greater the obesity risk
- An evening chronotype (and poor sleep) has been found to increase central adiposity and inflammatory biomarkers in adolescent girls (Project Viva Study) under K, et al. Paj Pealatr. 2019;173(11):1049-1057. de Pi

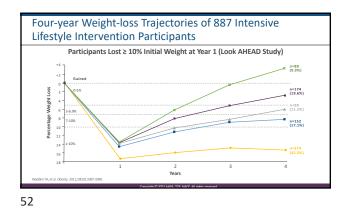

 \bigcirc G



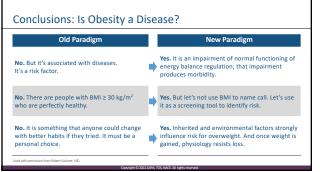








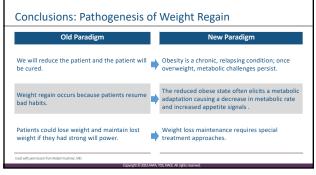
Obesity-Rela	ated Ho	rmonal Regulatio	n of Appetite and
Energy Bala	nce	-	
Key H	Hormone Cl	hanges Associated with We	ight Gain and Regain
Hormone	Source	Normal function	Alteration
Cholecystokinin	Duodenum	Suppresses appetite	Levels decrease during dieting and weight reduction
Glucose-dependent insulinotropic polypeptide	Duodenum, jejunum	Energy storage	Levels increase during dieting and weight reduct
Ghrelin	Gastric fundus	Stimulates appetite, particularly for high-fat, high-sugar foods	Levels increase during dieting and weight reduct
Glucagon-like peptide 1	lleum	Suppresses appetite and increase satiety	Decreased functionality
Insulin	Pancreas	Regulates energy balance Signals satiety to brain	Insulin resistance in obesity Reduced insulin levels after dieting
Leptin	Adipocytes	Regulates energy balance Suppresses appetite	Levels decrease during weight reduction
Peptide YY	Distal small intestine	Suppresses appetite	Levels decreased in obesity



Benefits of 5-10% Weight Reduction			
Condition	Amount of Weight Loss	Benefits	
Blood Pressure	5%	↓ systolic by 5 mm/Hg ↓ diastolic by 5 mm/Hg	
Cholesterol	5%	↑ HDL by 5 mg/dL ↓ Triglycerides by 40 mg/dL	
Pre-Diabetes	5%	↓ T2DM by 50%	
Diabetes	5%	↓ A1c by 0.5%	
Sleep Apnea	10%	\downarrow apnea episodes by up to 50%	
Arthritis	5-10%	\checkmark mechanical force off knee by up to 7x the weight loss	
NASH	10%	↓ liver inflammation and necrosis but not fibrosis	

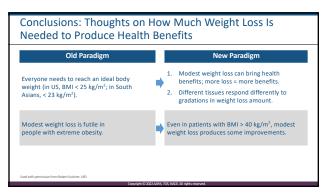
_

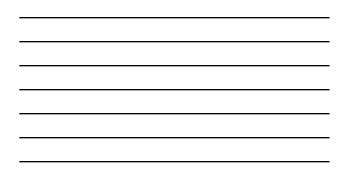
_


_

_

_


_


58

59

