

## Let's Talk About Gas: ABG Interpretation Made Easy



#### Andrew Walker, PSM, MS, PA-C

Physician Assistant Instructor of Medicine Critical Care/Internal Medicine Mayo Clinic Arizona



Stephanie Jalaba, MMS, PA-C

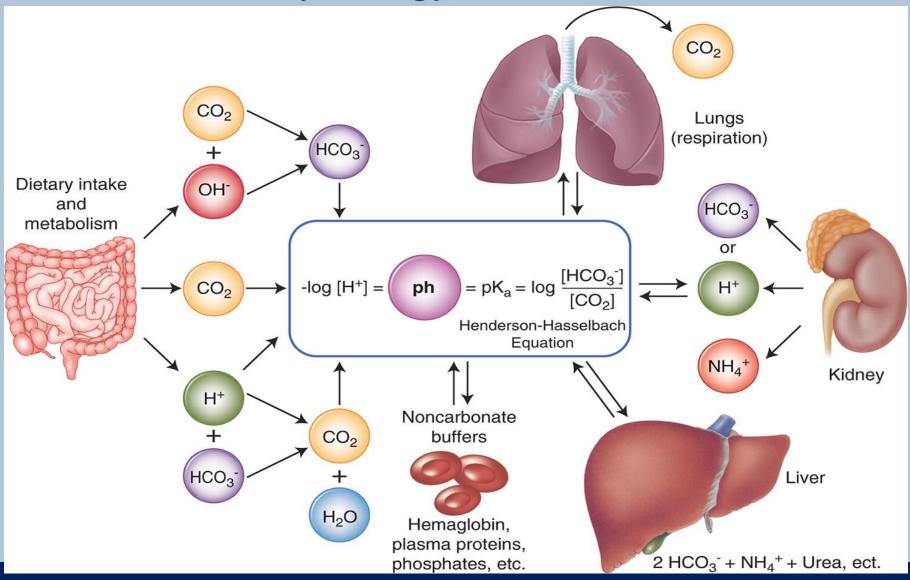
Physician Assistant Assistant Professor, Department of PA Medicine, Michigan State University College of Osteopathic Medicine

#### **Disclosures**

• None.

### **Objectives**

At the end of this presentation, the learner should be able to:


- 1. Analyze an ABG to determine the primary acid-base disorder.
- 2. Recognize compensation and mixed acid-base disorders.
- 3. Formulate differential diagnoses for the various acidbase disorders.
- 4. Apply ABGs to clinical scenarios and decision making.

#### Henderson-Hasselbalch Equation

$$pH = pK_a + log_{10} [A-] \xrightarrow{FBASE} ACID$$

- The ratio of base-acid must stay relatively constant for the pH to stay constant
  - Because this is a logarithmic equation, it takes a fairly large change in acid or base to change the pH

#### **Acid-Base Physiology**



#### Components of the ABG

| Component                        | Measure                                                               |
|----------------------------------|-----------------------------------------------------------------------|
| рН                               | Acid-base balance                                                     |
| PaO <sub>2</sub>                 | Partial pressure of oxygen                                            |
| PaCO <sub>2</sub>                | State of alveolar ventilation                                         |
| HCO <sub>3</sub> -               | Reflects metabolic component of blood                                 |
| Alveolar-arterial (A-a) gradient | Gradient between alveolar and arterial oxygen                         |
| Base excess*                     | The amount of acid or base it would take to return the pH back to 7.4 |

#### Indications for ABG

- Identify respiratory, metabolic, and mixed acid-base disorders
- Monitoring acid-base status in disorders such as DKA
- Quantification of oxyhemoglobin and oxygen carrying capacity of the patient
- Quantification of levels of dyshemoglobins (methemoglobin, carboxyhemoglobin)

#### Indications for ABG

- Measuring partial pressures of respiratory gases involved in ventilation and perfusion, e.g....
  - COPD exacerbation
  - Asthma exacerbation
  - Pulmonary embolism
  - Pulmonary fibrosis
  - Pneumothorax
  - In these cases, can measure severity and progression of disease/exacerbation
- Assessment of response to mechanical ventilation

# Some Clinical Scenarios Where an ABG is Useful in Acute Care

- Respiratory distress
- Hypoxia
- Airway obstruction
- Sepsis or shock
- DKA
- Renal failure
- Drug overdose or intoxication

- AMS or obtundation
- Monitoring response to invasive and noninvasive ventilation
- Code blue

#### **Contraindications to ABG**

- Local infection
- Distorted anatomy
- Abnormal Allen test
- AV fistula
- Severe PVD
- Relative contraindications:
  - Anticoagulation, tPA, severe coagulopathy
- Consider a-line if repeat ABGs will be necessary!



#### Before You Get an ABG

- Ask yourself...
  - What am I looking for/expecting?
  - Will this help guide or change my management?
    - How?
  - Will comparison be helpful after treatment/intervention?
    - Baseline ABG?

#### **ABG Normal Values**

| Component        | Low<br>Normal         | Normal<br>Range   | Estimated<br>Normal  | High<br>Normal         |
|------------------|-----------------------|-------------------|----------------------|------------------------|
| рН               | Acidosis              | 7.35 – 7.45       | 7.4                  | Alkalosis              |
| PaO <sub>2</sub> | Hypoxemia             | 80 – 100<br>mmHg  | 100 – (0.3<br>x age) | Hyperoxia              |
| PCO <sub>2</sub> | Respiratory alkalosis | 35 – 45<br>mmHg   | 40 mmHg              | Respiratory acidosis   |
| HCO <sub>3</sub> | Metabolic<br>acidosis | 22 – 26<br>mEq/L  | 24 mEq/L             | Metabolic<br>alkalosis |
| A-a<br>gradient  |                       | < 10 mmHg         | < 10 mmHg            |                        |
| Base<br>excess   |                       | -3 to +3<br>mEq/L |                      |                        |

#### ABG vs. VBG

- Venous blood gases (VBG) are widely used in the emergency setting
  - There is no data to confirm that this level of agreement is maintained in shock states or mixed acid-base disturbances

• Why get a VBG over an ABG?

#### How do ABG Values Compare to VBG

| ABG              | VBG                                                                                 |
|------------------|-------------------------------------------------------------------------------------|
| рН               | pH + 0.035 units                                                                    |
| pCO <sub>2</sub> | pCO <sub>2</sub> + 5.7 mmHg<br>*correlation dissociates in<br>hypercapnia and shock |
| HCO <sub>3</sub> | HCO <sub>3</sub> – 1.41 mmol/L                                                      |
| Base excess (BE) | BE + 0.089 mmol/L                                                                   |
| Lactate          | Does NOT correlate > 2mM                                                            |
| pO <sub>2</sub>  | Does NOT correlate (venous vs. arterial sample)                                     |

# **Clinical Application**

Finally...something that makes sense!

#### Why Do We Care?

- What do acidosis and alkalosis look like?
- What do they imply?
- How dangerous are they?
- What disturbances can they cause in the body?

#### **Respiratory Acidosis**

"I can't catch my breath!"

- Rapid, shallow breaths OR bradypnea
- Dyspnea
- Headache
- Disorientation
- Dizziness
- Drowsiness



- $\downarrow pH \uparrow pCO_2$
- Retention of CO<sub>2</sub> by the lungs

- Hypoxia
- Hyperkalemia
- Dysrhythmias
- Hyperreflexia
- Muscle Weakness

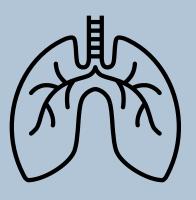
#### **Metabolic Acidosis**

- Confusion
- Drowsiness
- Headache
- Nausea, Vomiting
- Diarrhea



- Decreased BP
- Hyperkalemia
- Vasodilation
- Kussmaul respirations




Decreased ability of kidneys to excrete acid

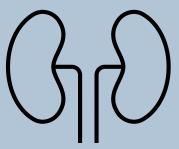
#### **Clinical Consequences of Acidemia**

| Cardiovascular | <ul> <li>Impaired cardiac contractility</li> <li>Decreased CO</li> <li>Decreased systemic BP</li> <li>Increased PVR</li> <li>Decreased threshold for arrhythmia</li> </ul>                                                                                            |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Respiratory    | <ul> <li>Hyperventilation (compensatory)<br/>with possible muscle fatigue</li> </ul>                                                                                                                                                                                  |
| Neurologic     | Obtundation/coma                                                                                                                                                                                                                                                      |
| Metabolic      | <ul> <li>Insulin resistance</li> <li>Loss of bone and muscle</li> <li>Protein degradation</li> <li>Abnormalities in the release of<br/>many hormones</li> <li>Hyperkalemia</li> <li>Inhibition of anaerobic glycolysis</li> <li>Reduction in ATP synthesis</li> </ul> |

### **Respiratory Alkalosis**

- Rapid, deep breathing
- Lethargy
- Confusion
- Nausea, vomiting
- Numbness and tingling




- Light headedness
- Seizure
- Tachycardia
- Hyperventilation
- Hyperkalemia

↑pH ↓pCO<sub>2</sub>

Loss of CO<sub>2</sub> from the lungs

#### Metabolic Alkalosis

- Restlessness  $\rightarrow$  lethargy
- Confusion
- Dizziness
- Irritability
- Nausea, vomiting
- Diarrhea



- Tremors
- Muscle cramping
- Tingling in fingers/toes
  - Hypokalemia
- Tachycardia



A decrease in acid or an increase in base

### **Clinical Consequences of Alkalemia**

| Cardiovascular | <ul> <li>Reduced coronary blood flow</li> <li>Reduced threshold for angina</li> <li>Decreased threshold for arrhythmia</li> </ul>                                                |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Respiratory    | <ul> <li>Hypoventilation (compensatory)<br/>with hypercapnia and hypoxemia</li> </ul>                                                                                            |
| Neurologic     | <ul> <li>Seizure</li> <li>Tetany</li> <li>Lethargy/delirium/stupor</li> </ul>                                                                                                    |
| Metabolic      | <ul> <li>Hypokalemia</li> <li>Hypomagnesemia</li> <li>Hypophosphatemia</li> <li>Stimulation of anaerobic glycolysis</li> <li>Decreased oxyhemoglobin<br/>dissociation</li> </ul> |

### **Acid-base Differentials**

# **Causes of Respiratory Acidosis**

- ↓Respiratory stimuli
  - Drug overdose
  - Anesthesia
  - Intracranial issues (TBI, Stroke, SAH, etc.)
- Spinal or peripheral nerve issues (C-spine injury, myasthenia gravis, ALS, peripheral neuropathy, etc.)
- Pulmonary issues (ARDS, asthma, pneumonia, COPD, massive PE/Shock, atelectasis)
- Extrathoracic/abdominal distention (obesity, compartment syndrome)

# **Causes of Metabolic Acidosis**

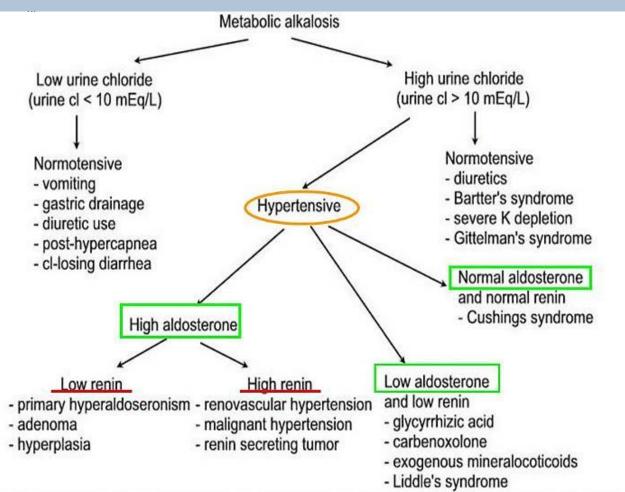
#### **MUDPILES**

- Methanol
- Uremia
- DKA
- Propylene glycol (Ativan, Dilantin)
- Isoniazid/Iron
- Lactate
- Ethanol/Ethylene glycol
- Salicylates / Seizures / Starvation

#### **USEDCRAP**

- Ureteroenterostomy Small bowel fistula
- Excess chloride\*
- Diarrhea
- Carbonic Anhydrase Inhibitors
- Renal Tubular Acidosis (RTA)
- Addison's disease / Acetazolamide
- Pancreatoenterostomy

#### A Word About Chloride...


| Fluid         | Na  | CI  | к   | Mg   | Са  | HC<br>O3          | Gluc | A<br>c | Gluc | Osm | рН  |
|---------------|-----|-----|-----|------|-----|-------------------|------|--------|------|-----|-----|
| Plasma        | 140 | 104 | 4.5 | 1.25 | 2.5 | 24                | 0.08 |        |      | 290 | 7.4 |
| 0.9%<br>Nacl  | 154 | 154 |     |      |     |                   |      |        |      | 308 | 5.5 |
| 0.45%<br>Nacl | 77  | 77  |     |      |     |                   |      |        |      | 406 |     |
| LR            | 130 | 109 | 4   |      | 1.5 | 28<br>(as<br>Lac) |      |        |      | 273 | 6.5 |
| P-lyte        | 140 | 98  | 5   | 1.5  |     |                   |      | 2<br>7 | 23   | 294 | 7.4 |
| 5% dex        |     |     |     |      |     |                   | 5    |        |      | 278 |     |

# **Causes of Respiratory Alkalosis**

- Pain
- Trauma
- Sepsis
- Pulmonary embolism
- Shock

- Drugs
- Pregnancy
- Hyperventilation (think sick first!)
- Mechanical ventilation

### **Causes of Metabolic Alkalosis**



# Let's do the math...

**ABG Analysis/Calculations** 

#### **ABG** Analysis Big Picture

- 1. Look at the **pH** to determine primary disorder
- 2. Look at **PCO<sub>2</sub>**, use in conjunction with pH to determine primary disorder
  - If pH and PCO<sub>2</sub> move in *opposite* directions, respiratory disorder is primary
  - If pH and PCO<sub>2</sub> move in the same direction, metabolic disorder is primary

#### **ABG** Analysis Big Picture

- 3. Look for mixed disorder
  - If both  $pCO_2$  and  $HCO_3$  are  $\uparrow \uparrow =$  respiratory acidosis OR metabolic alkalosis
  - If both pCO<sub>2</sub> and HCO<sub>3</sub> are ↓ ↓ = respiratory alkalosis OR metabolic acidosis
  - If pCO<sub>2</sub> and HCO<sub>3</sub> move in opposite direction ↑↓ = mixed disorder is present
- 4. Apply Compensation rules
  - Boston rule
  - Winter's formula
- 5. Look at Calculated/Corrected Anion Gap and Delta Gap
- 6. Clinical Application

\*paO2 in ABG tells us about the partial pressure of oxygen in blood. It is not used in assessment of acid-base disorders.

# ABG Practice: Steps 1-2

- pH low (<7.4) = Acidosis, pH high (>7.4) = Alkalosis
- If pH and PCO<sub>2</sub> move in *opposite* directions, respiratory disorder is primary
- If pH and PCO<sub>2</sub> move in the same direction, metabolic disorder is primary

| рН  | PCO <sub>2</sub> | HCO <sub>3</sub> | Disorder                |
|-----|------------------|------------------|-------------------------|
| 7.2 | 70               | 28               | Respiratory<br>Acidosis |

| рН  | PCO <sub>2</sub> | HCO <sub>3</sub> | Disorder              |
|-----|------------------|------------------|-----------------------|
| 7.2 | 30               | 16               | Metabolic<br>Acidosis |

#### ABG Practice: Steps 1-2

| рН  | PCO <sub>2</sub> | HCO <sub>3</sub> | Disorder               |
|-----|------------------|------------------|------------------------|
| 7.5 | 40               | 31               | Metabolic<br>alkalosis |

| рН  | PCO <sub>2</sub> | HCO <sub>3</sub> | Disorder              |
|-----|------------------|------------------|-----------------------|
| 7.5 | 30               | 16               | Respiratory alkalosis |

# Let's add in the next layer of complexity...

Step 3: Look for mixed disorders

#### ABG Practice: Step 3

- If both  $pCO_2$  and  $HCO_3$  are  $\uparrow \uparrow =$  respiratory acidosis OR metabolic alkalosis
- If both  $pCO_2$  and  $HCO_3$  are  $\downarrow \downarrow =$  respiratory alkalosis OR metabolic acidosis
- If  $pCO_2$  and  $HCO_3$  move in opposite direction  $\uparrow \downarrow =$  mixed disorder is present

| рН   | PCO <sub>2</sub> | HCO <sub>3</sub> | Disorder                                         |
|------|------------------|------------------|--------------------------------------------------|
| 7.28 | 55               | 19               | Primary respiratory acidosis, metabolic acidosis |

- 1. Look at pH  $\rightarrow$  acidosis
- 2. Look at pH and  $PCO_2 \rightarrow$  opposite, respiratory disorder is primary
- Look at pCO<sub>2</sub> and HCO<sub>3</sub> → opposite, mixed disorder present → HCO<sub>3</sub> low, implies metabolic acidosis also present

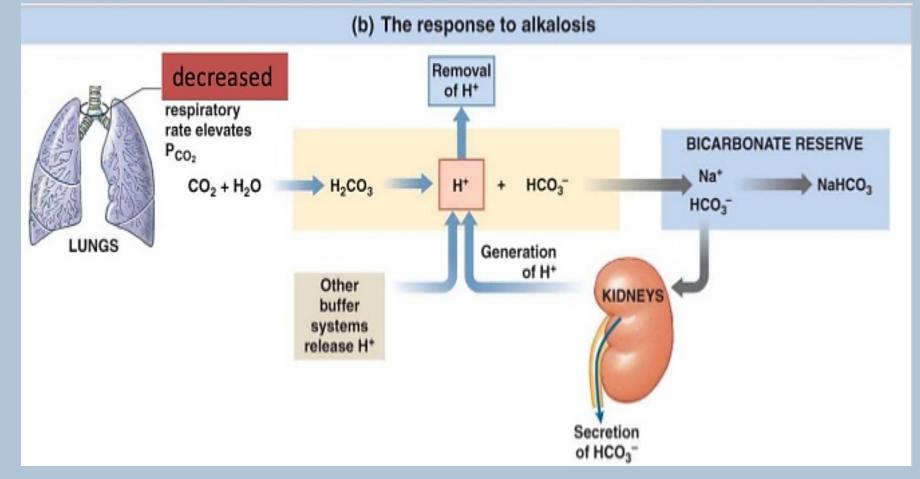
#### ABG Practice: Step 3

| рН   | PCO <sub>2</sub> | HCO <sub>3</sub> | Disorder                                              |
|------|------------------|------------------|-------------------------------------------------------|
| 7.50 | 24               | 28               | Respiratory alkalosis primary,<br>metabolic alkalosis |

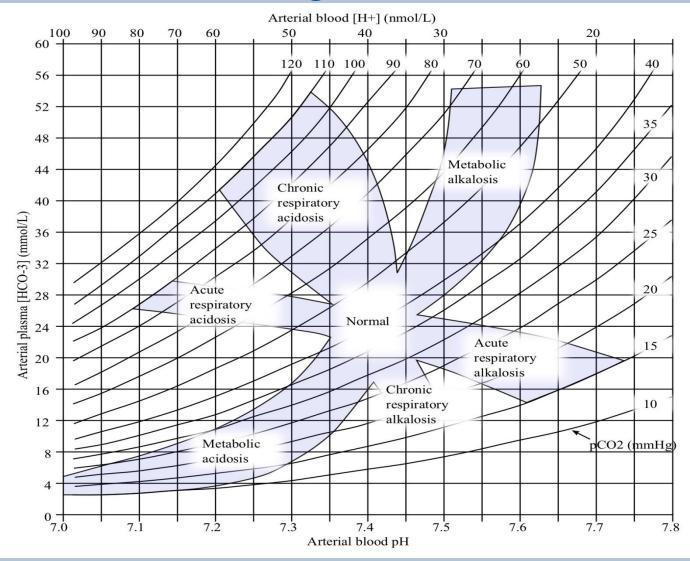
- 1. Look at pH  $\rightarrow$  alkalosis
- 2. Look at pH and  $PCO_2 \rightarrow opposite$ , respiratory disorder is primary
- Look at pCO<sub>2</sub> and HCO<sub>3</sub> → opposite, mixed disorder present → HCO<sub>3</sub> high, implies metabolic alkalosis also present

### Let's add another layer

Step 4: Compensation


### **Compensation Physiology**

- Respiratory system: maintains pH by regulating CO<sub>2</sub>
  - Can compensate quickly
- Renal (metabolic) system: regulates pH by excreting H<sup>+</sup> (acid) or reabsorbing HCO<sub>3</sub><sup>-</sup> (base)
   Several hours to days to compensate
- With the body's ACUTE compensation, the pH will NOT return to normal, but it may get close


### **Buffering Systems/Compensation**

(a) The response to acidosis Addition Increased of H\* respiratory rate lowers BICARBONATE RESERVE P<sub>CO2</sub> Na\* NaHCO<sub>3</sub> H<sub>2</sub>CO<sub>3</sub> CO2 + H2O HCO3 H<sup>+</sup> 4 (sodium HCO<sub>3</sub> (carbonic (bicarbonate bicarbonate) acid) ion) LUNGS Generation of HCO3 (sodium Other KIDNEYS bicarbonate) buffer systems absorb H\* Secretion of H<sup>+</sup>

### **Buffering Systems/Compensation**



### Acid-base Nomogram



### Compensation

| Acid-Base Disorder    | Primary Change     | Compensatory<br>Change |
|-----------------------|--------------------|------------------------|
| Respiratory acidosis  | $PCO_2 \uparrow$   | HCO <sub>3</sub> ↑     |
| Respiratory alkalosis | $PCO_2\downarrow$  | HCO <sub>3</sub> ↓     |
| Metabolic acidosis    | $HCO_3\downarrow$  | $PCO_2\downarrow$      |
| Metabolic alkalosis   | HCO <sub>3</sub> ↑ | PCO <sub>2</sub> ↑     |

| Acid-Base<br>Disorder  | Primary<br>Change  | Compensa<br>tory<br>Change |
|------------------------|--------------------|----------------------------|
| Respiratory acidosis   | $PCO_2$ $\uparrow$ | $\text{HCO}_3 \uparrow$    |
| Respiratory alkalosis  | $PCO_2\downarrow$  | $HCO_3 \downarrow$         |
| Metabolic<br>acidosis  | HCO <sub>3</sub> ↓ | $PCO_2\downarrow$          |
| Metabolic<br>alkalosis | HCO <sub>3</sub> ↑ | $PCO_2 \uparrow$           |

### ABG Practice: Step 4

| рН   | PCO <sub>2</sub> | HCO <sub>3</sub> | Primary<br>Disorder  |
|------|------------------|------------------|----------------------|
| 7.28 | 60               | 35               | Respiratory acidosis |

- 1. pH: Acidosis
- pCO<sub>2</sub> and pH move in opposite directions → primary respiratory disorder
- 3.  $pCO_2$  and  $HCO_3$  both high  $\rightarrow$  respiratory acidosis
- 4. Expected change with respiratory acidosis  $\rightarrow$  HCO<sub>3</sub> increases

| Acid-Base<br>Disorder    | Primary<br>Change | Compensa<br>tory<br>Change |
|--------------------------|-------------------|----------------------------|
| Respiratory acidosis     | $PCO_2 \uparrow$  | $\text{HCO}_3 \uparrow$    |
| Respiratory<br>alkalosis | $PCO_2\downarrow$ | $HCO_3 \downarrow$         |
| Metabolic<br>acidosis    | $HCO_3\downarrow$ | $PCO_2\downarrow$          |
| Metabolic<br>alkalosis   | $HCO_3 \uparrow$  | $PCO_2 \uparrow$           |

### ABG Practice: Step 4

| рН  | PCO <sub>2</sub> | HCO <sub>3</sub> | Primary<br>Disorder    |
|-----|------------------|------------------|------------------------|
| 7.5 | 55               | 36               | Metabolic<br>alkalosis |

- 1. pH: Alkalosis
- 2.  $pCO_2$  and pH move in same direction  $\rightarrow$  primary metabolic disorder
- 3.  $pCO_2$  and  $HCO_3$  are high = metabolic alkalosis
- 4. Expected change with metabolic alkalosis  $\rightarrow$  PCO<sub>2</sub> increases  $\checkmark$

### You're experts! Let's add on...

Calculating for compensation

### **Calculating for Compensation**

- Respiratory Rule #1: pH changes INVERSELY by 0.08 for 10 mm CO<sub>2</sub> in ACUTE cases
  - If CO<sub>2</sub>= 50, pH will be 7.32 (0.08 below)
  - If CO<sub>2</sub>=30, pH will be 7.48 (0.08 above)

\*DO NOT USE IN CHRONIC CASES...pH usually corrects/compensates to normal (7.4).

### **Calculating for Compensation**

## **Boston Rules** (to predict changes in $HCO_3^-$ from $PaCO_2^-$ respiratory disorders):

| Change in CO2 | Change in HCO3 | Condition              | Example    |
|---------------|----------------|------------------------|------------|
| 10            | 1              | Acute Resp Acidosis    | If CO2=50, |
|               |                |                        | HCO3=25    |
| 10            | 2              | Acute Resp Alkalosis   | If CO2=30, |
|               |                |                        | HCO3=22    |
| 10            | 4              | Chronic Resp Acidosis  | If CO2=50, |
|               |                |                        | HCO3=28    |
| 10            | 5              | Chronic Resp Alkalosis | If CO2=30, |
|               |                |                        | HCO3=19    |

### **Calculating for Compensation**

Winter's Formula (metabolic acidosis):
 Expected pCO<sub>2</sub> = 1.5 x HCO<sub>3</sub> + 8 +/- 2

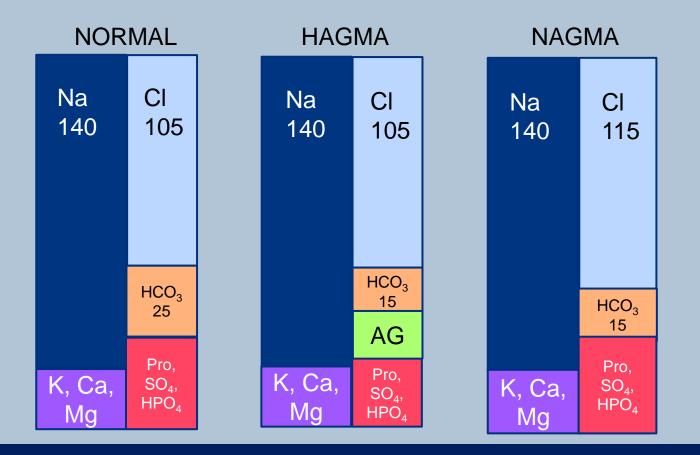
- Metabolic Alkalosis
  - Expected  $pCO_2 = 0.7 \times [HCO_3^-] + 20 (+/-5)$

### One last concept(s)...

Step 5: Look at Calculated/Corrected Anion Gap and Delta Gap

### Anion Gap (Calculated)

 Anion Gap = the difference between measured cations (Na+, K+) and measured anions (CI- and HCO<sub>3</sub><sup>-</sup>)


= Na - [Cl + HCO<sub>3</sub>]

#### Normal range = 4 – 12 mmol/L

\*We call this the calculated anion gap (cAG), because it is calculated from the CMP

- Significance?
  - The law of electrochemical neutrality
  - Provides foresight into managing acidosis

## High vs. Normal Anion Gap Metabolic Acidosis



# High Anion Gap Metabolic Acidosis (HAGMA)



- Accumulation of or impairment of excretion of acids
- MUDPILES:
  - Methanol
  - Uremia
  - DKA
  - Propylene glycol (Ativan, Dilantin)
  - Isoniazid/Iron
  - Lactate
  - Ethanol/Ethylene glycol
  - Salicylates/Seizures/Starvation

### Normal Anion Gap Metabolic Acidosis (NAGMA)

- Mainly from losses of bicarb (HCO<sub>3</sub><sup>-</sup>)
- USEDCRAP (earlier slide) OR
- ABCDE
  - Addison's
  - Bicarbonate loss (GI or renal think v/d, fistula, ostomy)
  - Chloride excess\*
  - Diuretics (acetazolamide)\*
  - Extra Renal tubular acidosis (RTA)\*

### Anion Gap (corrected)

- Corrected Anion Gap (corrAG) = takes into account the unmeasured anions (albumin, sulfate, phos), which may change with acute or chronic illness
- = [2 x Albumin] + [0.5 Phosphate] (+/- 2) OR [3 x Albumin]

Normal range = 8 - 12 mmol/L

- Significance?
  - If calcAG > corrAG, there is <u>high gap metabolic</u> acidosis present

### Delta Gap

 \*Check in the presence of HAGMA to determine if pure HAGMA or coexisting disorder present\*

- Delta Gap =  $[calcAG corrAG] + HCO_3$ 
  - Net sum = 24
    - HAGMA only
  - Net sum < 24
    - NAGMA (non-anion gap acidosis) is present
  - Net sum > 24
    - METABOLIC ALKALOSIS is present

### Practice: Minding the Gaps

| <u>ABG:</u>      |          |
|------------------|----------|
| рН               | 7.18     |
| $PCO_2$          | 34 mmHg  |
| HCO <sub>3</sub> | 12 mEq/L |

<u>BMP:</u> Na= 138, K=3.8, Cl=115 Albumin=2.3, Phos=1

calcAG = 138 – [115+12] = **11** 

corrAG = 2 x 2.3 + [0.5 x1] = 5.1 (+/- 2)

calcAG > corrAG → HAGMA present

**Delta Gap** =  $[calcAG - corrAG] + HCO_3 = 6 + 12 = 18$ 

18 < 24...therefore, NAGMA present also

Let's practice...

A 26 YO M with asthma presents to the ED with difficulty breathing x 3 days. It is getting progressively worse. He has tried his regular and rescue inhalers; nothing seems to help. He looks pale and is taking rapid, shallow breaths. On exam, he has diffuse wheezing in all lung fields.

#### Vitals:

- HR 120
- BP 113/76
- RR 28
- $SpO_2 92\%$
- Temp 37.8C

#### **ABG results:**

- pH 7.08
- $pCO_2 80 \text{ mmHg}$
- $HCO_3^{-} 28 \text{ mEq/L}$

Acute Respiratory Acidosis

#### Other results (pertinent):

- Na 138 mEq/L (135-145)
- K 4.0 mmol/L (3.6-5.2)
- CI 106 mEq/L (96-106)
- Albumin 3.8 g/dL (3.5-5.5)
- Phos 3.0 mg/dL (2.8 4.5)

#### ABG results:

- pH 7.08
- pCO<sub>2</sub> 80 mmHg
- HCO<sub>3</sub><sup>-</sup> 28 mEq/L

Compensation rules...

- Respiratory rule #1
- pCO<sub>2</sub> ↑ by 40 (10x4)
- Expected pH change =  $0.08 \times 4 = 0.32$
- Actual pH change = 7.4 7.08 = 0.32

#### **ABG results:**

- pH 7.08
- pCO<sub>2</sub> 80 mmHg
- HCO<sub>3</sub><sup>-</sup> 28 mEq/L

#### Other results (pertinent):

- Na 138 mEq/L (135-145)
- K 4.0 mmol/L (3.6-5.2)
- CI 106 mEq/L (96-106)
- Albumin 3.8 g/dL (3.5-5.5)
- Phos 3.0 mg/dL (2.8 4.5)

- calcAG = 138- [106+28] = 4
- corrAG = [2x3.8]+[0.5x3] = 9.1
- calcAG < corrAG = no additional HAGMA
- Delta gap = not needed

### Case 1 DDx + Management

- Asthma exacerbation  $\rightarrow$  rapid, shallow breaths  $\rightarrow$  retaining CO<sub>2</sub>  $\rightarrow$  Acute Respiratory Acidosis
- Management
  - Reverse the respiratory acidosis, augment breathing to help improve gas exchange until the patient improves and can do so on their own
    How?
  - When would you get a follow-up ABG?

A 35 YO M presents to the ED with gun shot wound (GSW) to the abdomen. He was found down by a civilian about 20 minutes after the shooting who called 911. Upon arrival, he appears pale, diaphoretic, and is experiencing severe abdominal pain. He is slightly altered and cannot tell you where he is. He has no past medical history.

#### Vitals:

- HR 116
- BP 86/68
- RR 10
- $SpO_2 96\%$
- Temp 37.6C

#### **ABG results:**

- pH 7.18
- $pCO_2 34 \text{ mmHg}$
- $HCO_3^{-} 12 \text{ mEq/L}$

Acute Metabolic Acidosis

#### Other results (pertinent):

- Na 132 mEq/L (135-145)
- K 3.6 mmol/L (3.6-5.2)
- CI 92 mEq/L (96-106)
- Albumin 3.2 g/dL (3.5-5.5)
- Phos 2.1 mg/dL (2.8 4.5)

#### **ABG results:**

- pH 7.18
- $pCO_2 34 \text{ mmHg}$
- HCO<sub>3</sub><sup>-</sup> 12 mEq/L

Compensation rules...

- Winter's formula (metabolic acidosis)
  - Expected  $PCO_2$  in metabolic acidosis:
  - $= 1.5 \times HCO_3 + 8 = 26 (+/-2)$
  - Expected pCO<sub>2</sub> is lower than our actual... what does this mean?

- The expected degree of respiratory compensation is not present...
- There is also a respiratory acidosis

- Respiratory depression/AMS → slower, possibly more shallow breaths → retention of CO<sub>2</sub> → respiratory acidosis
  - Normally, the body would begin breathing more quickly to blow off CO<sub>2</sub> and help compensate for the metabolic acidosis...

#### **ABG results:**

- pH 7.18
- pCO<sub>2</sub> 34 mmHg
- HCO<sub>3</sub><sup>-</sup> 12 mEq/L

#### Other results (pertinent):

- Na 132 mEq/L (135-145)
- K 3.6 mmol/L (3.6-5.2)
- CI 92 mEq/L (96-106)
- Albumin 3.2 g/dL (3.5-5.5)
- Phos 2.1 mg/dL (2.8 4.5)

- calcAG = 132 [92+12] = 28
- corrAG = [2x3.2]+[0.5x2.1] = 7.45
- calcAG>corrAG = HAGMA present (we already know this)
- Delta gap = [28-7.45]+12 = 32.55
- Delta gap > 24 → metabolic alkalosis also present

### Case 2 DDx

#### HAGMA

- MUDPILES:
  - Methanol
  - Uremia
  - DKA
  - Propylene glycol (Ativan, Dilantin)
  - Isoniazid/Iron
  - Lactate
  - Ethanol/Ethylene glycol
    - Salicylates/Seizures/Starvation

#### **Respiratory Acidosis**

- *trespiratory stimulus*
- Atelectasis
- Additional injuries?

#### Metabolic Alkalosis

- GI acid loss
  - Vomiting/NG drainage
  - Diarrhea
  - Ostomy
  - Dehydration
- Renal acid loss
  - Bartter, Gitelman syndrome
  - Diuretics
- Added base
  - Laxatives, milk-alkali syndrome, antacid OD
  - latrogenic bicarb administration
- Endocrine
  - Cushing
  - Steroid excess
  - Hyperaldosteronism

### Case 2 Management

- You obtain a lactate level to confirm your suspicion... = 6.2 mmol/L (<2.3).</li>
- His renal function is normal...for now.
- His H/H is 8 g/dL / 26% (13.2-16.6 / 38.3-48.6%).

### Case 2 Management

 Acute blood loss → hypovolemic shock → decreased organ perfusion and O2 delivery → interference with aerobic metabolism → increased anaerobic metabolism → production of lactic acid and metabolic acidosis

- How are you going to manage this patient?
- How did the ABG help us in this scenario?
- Will you get a repeat ABG? If so, when?

A 64 YO M with ESRD s/p kidney transplant, Type 2 DM, and chronic HFrEF presents to the ED with 3 days of fatigue, abdominal pain, and shortness of breath. He is unsure, but he may have had a fever. On exam, he appears unwell and has crackles in the L lung base. He missed dialysis today. CXR shows a L basilar infiltrate.

#### Vitals:

- HR 100
- BP 92/78
- RR 20
- SpO<sub>2</sub> 84%
- Temp 38.0



- pH 7.29
- pCO<sub>2</sub>23.3
- HCO<sub>3</sub><sup>-</sup> 11.1
- pO<sub>2</sub> 52.9

Acute Metabolic Acidosis

#### Other results (pertinent):

- Na 136
- K 5.2
- CI 106
- AG 18
- Glucose 260
- Albumin 2.8
- Phos 3.0
- BUN 89.1
- Cr 4.3
- Lactate 1.3
- Beta-hydroxybutyrate 2.7

#### **ABG results:**

- pH 7.29
- pCO<sub>2</sub>23.3
- HCO<sub>3</sub><sup>-</sup> 11.1
- pO<sub>2</sub> 52.9

Compensation rules...

### Winters formula

Expected  $pCO_2 = 1.5 \times 11 + 8 = 24.5 (+/-2)$ 

Actual  $pCO_2 = 23.3$ 

#### **ABG results:**

- pH 7.29
- pCO<sub>2</sub> 23.3
- HCO<sub>3</sub><sup>-</sup> 11.1
- pO<sub>2</sub> 52.9

#### Other results (pertinent):

- Na 136
- K 5.2
- CI 106
- Glucose 260
- Albumin 2.8
- Phos 3.0
- BUN 89.1
- Cr 4.3
- Lactate 1.3
- Beta-hydroxybutyrate 2.7

- calcAG = 136 [106 + 11] = 19
- corrAG = [2x2.8] + [0.5x3.0] = 7.1
- calcAG>corrAG = HAGMA present (we already know this)
- Delta gap = [19-7] + 11 = 23
- Delta gap < 24 = NAGMA also present

### Case 3 DDx

### **MUDPILES = HAGMA**

Methanol

### Uremia

- DKA
- Propylene glycol (Ativan, Dilantin)
- Isoniazid/Iron
- Lactate
- Ethanol/Ethylene glycol
- **S**alicylates / Seizures / Starvation

### <u>ABCDE = NAGMA</u>

Addison's

- Bicarbonate loss (GI or renal – think v/d, fistula, ostomy)
- Chloride excess
- Diuretics (acetazolamide)
- Extra Renal tubular acidosis (RTA)

# Case 3 Management

- How are we going to correct this patient's HAGMA and NAGMA ?
- 1. Treat DKA
- 2. Dialysis...add bicarb
- 3. Treat underlying cause of DKA...what was going on with this patient?

Are you going to get another ABG? If so, when?

A 23 YO F returns from a volunteer humanitarian trip to Haiti. She presents to her PA with nausea & vomiting x2 days. The vomiting is becoming more frequent, and she can't keep down any liquids. On exam, she appears significantly dehydrated and her respirations are frequent but shallow.

### Vitals:

- HR 102
- BP 90/64
- RR 20
- SpO<sub>2</sub> 99%
- Temp 37.6 C

#### **ABG results:**

- pH 7.56
- pCO<sub>2</sub> 40 mmHg
- HCO<sub>3</sub><sup>-</sup> 32 mEq/L

Acute Metabolic Alkalosis

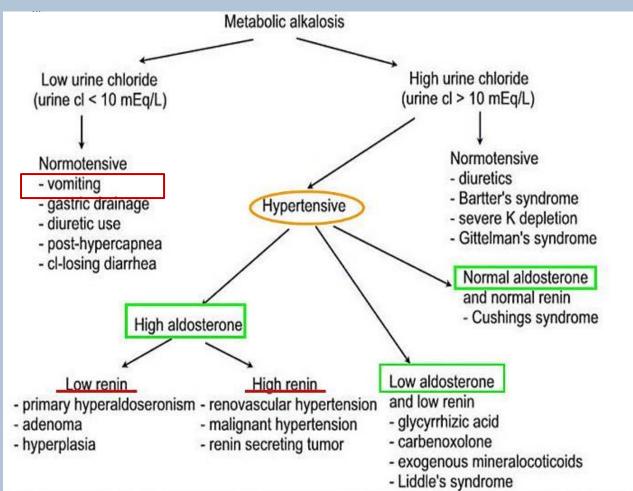
Other results (pertinent): Na - 132K - 3.4Cl - 86Albumin - 2.3Phos - 2.0Glucose - 86BUN - 32Cr - 1.0Lactate - 1.8

#### ABG results:

- pH 7.56
- $pCO_2 40 \text{ mmHg}$
- HCO<sub>3</sub> 32 mEq/L
- Compensation rules...
- Expected  $pCO_2 = 0.7 \times [32] + 20 = 42.4 (+/-5)$
- Actual  $pCO_2 = 40$

#### **ABG results:**

- pH 7.56
- pCO<sub>2</sub> 40 mmHg
- HCO<sub>3</sub><sup>-</sup> 32 mEq/L


Other results (pertinent):

Na - 132 K - 3.4 Cl - 86 Albumin - 2.3 Phos - 2.0 Glucose - 86 BUN - 32 Cr - 1.0 Lactate - 1.8

- calcAG = 132 [86+32] = 14
- corrAG = [2x2.3]+[0.5x2.0] = 5.6
- calcAG>corrAG = HAGMA present
- Delta gap = [14-5.6] + 32 = 40.4
- Delta gap > 24 = Metabolic Alkalosis (we already know this)

Acute Metabolic Alkalosis + HAGMA

### Case 4 DDx



# Case 4 DDx

### **MUDPILES = HAGMA**

- Methanol
- Uremia
- DKA
- Propylene glycol (Ativan, Dilantin)
- Isoniazid/Iron
- Lactate
- Ethanol/Ethylene glycol
- Salicylates / Seizures / Starvation

Beta-hydroxybutyrate =  $2.3 (\uparrow)$ 

### Case 4 Management

- How are we going to manage this patient?
  - Fluids
  - Antiemetics  $\rightarrow$  nutrition
  - Look for infectious causes

• Does the ABG change our course of action?

• Will you get a follow up ABG? If so, when?

A 68 YO F presents to the ED with 3 days of progressively worsening cough and shortness of breath. She has been experiencing intermittent fevers. Her appetite is diminished, and she is fatigued. On exam, she has scattered crackles. CXR reveals a multifocal pneumonia.

| Vitals:              | ABG Results: Other results (pert            |               |
|----------------------|---------------------------------------------|---------------|
| HR 96                | • pH 7.55                                   | Na – 134      |
| BP 112/82            | <ul> <li>pCO<sub>2</sub> 22 mmHg</li> </ul> | K – 4.2       |
| RR 26                | • $HCO_3^-$ 16 mEq/L                        | CI – 100      |
| SpO <sub>2</sub> 84% |                                             | BUN – 32      |
| Temp 37.9 C          | Acute Respiratory Alkalosis                 | Cr – 1.2      |
|                      |                                             | Albumin – 3.8 |

Phos - 3.0

Lactate -3.2

#### **ABG Results:**

- pH 7.55
- pCO<sub>2</sub> 22 mmHg
- HCO<sub>3</sub><sup>-</sup> 16 mEq/L

#### Compensation rules...Boston Approach for Resp Disorders

Case 5

| Change in CO2 | Change in HCO3 | Condition              | Example    |
|---------------|----------------|------------------------|------------|
| 10            | 1              | Acute Resp Acidosis    | If CO2=50, |
|               |                |                        | HCO3=25    |
| 10            | 2              | Acute Resp Alkalosis   | If CO2=30, |
|               |                |                        | HCO3=22    |
| 10            | 4              | Chronic Resp Acidosis  | If CO2=50, |
|               |                |                        | HCO3=28    |
| 10            | 5              | Chronic Resp Alkalosis | If CO2=30, |
|               |                |                        | HCO3=19    |

 $pCO_2$  went from 40  $\rightarrow$  22 (roughly 20)

We expect HCO<sub>3</sub> to decrease by 4 (using 24 baseline), therefore expecting HCO<sub>3</sub> to be  $20 \rightarrow$  there is compensation, and potentially another unaccounted-for process

Is there a mixed disorder present?

#### **ABG Results:**

- pH 7.55
- pCO<sub>2</sub> 22 mmHg
- HCO<sub>3</sub><sup>-</sup> 16 mEq/L

Other results (pertinent): Na - 134K - 4.2Cl - 100

BUN – 32

Cr – 1.2 Albumin – 3.8

- Phos 3.0
- 1 1103 5.0

Lactate – 3.2

- calcAG = 134 [100 + 16] = 18
- corrAG = [2x3.8] + [0.5x3.0] = 9.1
- calcAG>corrAG = HAGMA present

Delta gap = [18-9.1] + 16 = 32.9

 Delta gap = 24.9 ...close enough! Only HAGMA present

Acute Respiratory Alkalosis + HAGMA

# Case 5 DDx

 Hypoxic stimulation 2/2 pneumonia leads to hyperventilation to try to correct the hypoxia, at the expense of CO<sub>2</sub> loss → acute respiratory alkalosis

#### • MUDPILES = HAGMA

- Methanol
- **U**remia
- DKA
- Propylene glycol (Ativan, Dilantin)
- Isoniazid/Iron
- Lactate
- Ethanol/Ethylene glycol
- Salicylates / Seizures / Starvation

# Case 5 Management

- What is an appropriate management strategy to correct the respiratory alkalosis?
  - Supplemental oxygen
- How are we going to correct the metabolic acidosis?
  - Treat the infection!
  - Clear the lactate...ensure perfusion (? fluids)
- How did the ABG help us here?
- Would you get a repeat ABG? If so, when?

# In Summary...

- Look at the pH first
  - Do pH and PCO<sub>2</sub> change in the same direction?
- Use all components/calculations of the ABG
  - Don't skip the calculations...it may change your management!
- Apply clinically to your patient; don't just treat the numbers
  - Use your differentials...MUDPILES, USEDCRAP, etc.
- Consider what will happen if you start treatment
  - Will treating help or hurt?

# References

- Brandis K. Acid Base Book. <u>https://www.anaesthesiamcq.com/AcidBaseBook/</u>. Accessed August 1, 2021.
- Simple and mixed acid-base disorders. UpToDate.com. <u>https://www.uptodate.com/contents/simple-and-mixed-acid-base-</u> <u>disorders?search=simple%20and%20mixed%20acid%20base%20disorders&source</u> <u>=search\_result&selectedTitle=1~150&usage\_type=default&display\_rank=1</u>. Updated September 9, 2020. Accessed August 1, 2021.
- Story DA. Stewart Acid-Base: A Simplified Bedside Approach. *Anesthesia & Analgesia.* 2016;123(2):511-515. doi: 10.1213/ANE.000000000001261
- VBG versus ABG. litfl.com. https://litfl.com/vbg-versus-abg/. Published Nov 3, 2020. Accessed August 1, 2021.
- Reddi AS. Acid-Base Disorders: Clinical Evaluation and Management. Cham, Switzerland: Springer Nature Switzerland AG; 2020. <u>https://link-springer-</u> <u>com.proxy2.cl.msu.edu/book/10.1007%2F978-3-030-28895-2#toc</u>. Accessed August 1, 2021.