More than Vancomycin: Practical Pearls for Prescribing Antimicrobials in the Hospital Setting

Christopher M. Bland, Pharm.D., FCCP, FIDSA, BCPS

Clinical Professor UGA College of Pharmacy Savannah, GA

Øblandman19

Disclosures

- Speaker's Bureau
 - Merck Pharmaceuticals

Objectives

- Define the most common antimicrobials used in hospital practice
- Delineate practical pearls within each antimicrobial for optimized use
- Describe opportunities for antimicrobial stewardship within the hospital setting

Where we are currently in ID

- At least 30-50% of antibiotic usage is unnecessary
- Antimicrobial prescribing is often more behavioral than scientific
- Fewer infectious diseases players in antibiotic research and development
- Duration of therapy has been largely made up for many infections
- Constantine in 321 A.D. decreed 7 days as a week
 - Hence how we have come to 7-14 days of therapy for many infections

What is Antimicrobial Stewardship?

"Antimicrobial stewardship includes not only limiting inappropriate use but also *optimizing* antimicrobial selection, dosing, route, and duration of therapy to *maximize clinical cure* or prevention of infection while limiting the unintended consequences, such as the *emergence of resistance*, adverse drug events, and *cost*."

- 5 "Rights"
 - Choice of antimicrobial
 - Route of administration
 - Dose
 - Time
 - Duration

https://www.cdc.gov Clin Infect Dis 2009;48:1-12. Dellit TH et al. *Clin Infect Dis*. 2007;44:159-77.

What are the risks of prolonged, unnecessary therapy?

- C. difficile infection
- Adverse effects
- Resistance emergence
- Microbiome alteration
- Increased costs
- Bottom line: Defining appropriate DOT is an important antimicrobial stewardship issue. Many times zero is the right DOT...

Rooney AM et al. *Clin Infect Dis*. 2019 Aug 1. Ahead of Print Branch-Elliman W. et al. *JAMA Surg*. 2019;154:590-98.

Discharge Rx Effect on DOT

- 3 centers
- ~45,000 inpatients admissions
- Discharge Rxs made up nearly 40% of total therapy
- Nearly 8 in 10 patients who received discharge Rx exceeded 7-day duration for most commonly seen infections
- Patients with discharge Rxs had longer DOT than those who received all ABX inpatient
- Count all days of effective antibiotics before writing discharge Rx
 - Begin with end in mind

Dyer A. et al. *Infect Control Hosp Epidemiol*. 2019;40:847-54.

Summary of Disease States where Short Is In

Stewardship	: Shoi	rter =	Bett	er
Diagnosis	Short (d)	Long (d)	Result	#RCT
САР	3-5	5-14	Equal	12
Atypical CAP	1	3	Equal	1
VAP	8	15	Equal	2
cUTI/Pyelo	5 or 7	10 or 14	Equal	8*
Intra-abd	4	10	Equal	2
GNB Bacteremia	7	14	Equal	2**
Cellulitis	5-6	10	Equal	4*
Osteomyelitis	42	84	Equal	2
Osteo with Removed Implant	28	42	Equal	1
Debrided Diabetic Osteo	10-21	42-90	Equal	2*
Septic Arthritis	14	28	Equal	1
AECB & Sinusitis	<u><</u> 5	<u>></u> 7	Equal	>25
Neutropenic Fever	AFx72 h	+ANC>500	Equal	1
<i>P. vivax</i> Malaria	7	14	Equal	1
Total: 14 Diseases				64 BCTs

*1 RCT in males; **GNB bacteremia also in UTI/cIAI RCTs; †3 RCTs equal, 1 (low dose oral flucox) ↑relapses 2° endpoint; *all patients debrided, in 1 study total bone resection (clean margins); refs at https://www.bradspellberg.com/shorter-is-better

> https://twitter.com/BradSpellberg/status/13754 68869100335108/photo/1. Accessed 9/9/21.

Keys to Success

- Become familiar hospital formulary
 - But most drugs can be obtained if right situation
- Get to know antimicrobial stewardship team including pharmacists
 - Stewardship programs mandated at all hospitals
 - Pharmacists can help facilitate transitions in care
 - Also help with obtaining patient assistance for medications
- Become familiar with hospital antibiogram for empiric prescribing
 - Typically done annually
 - Will provide best agents by drug-bug combination
 - Some hospitals break down by unit (e.g. ICU vs. non-ICU cultures)
 - Incredibly helpful for knowing best *Pseudomonas aeruginosa* therapies

Where to find antimicrobial drug information?

- Sanford Guide
 - Keep in mind this is "national" guide
 - Not substitute for local antibiogram
 - Good for the +/- Table in middle of book
 - Available as app for 29.95 annually
- Infectious Diseases Society of America (IDSA) guidelines
 - This is best place for empiric regimens including dosing
 - Broken down by syndrome or pathogen
 - Free
 - Go to idsociety.org
 - Tables are your friend!

Sample Antibiogram

Figure 1: Example Antibiogram

		Amin	oglyco	sides		B-Lactan	IS	0	ephalo	sporins		Quind	olones		Others	
Gram (-)	# of patients	Amikacin	Gentamicin	Tobramycin	Ampicillin	lmpipnem	Pipe rcillinp Taz obactam	Cefzolin	Cefoxitin	Ceftriaxone	Ceftazidime	Ciprofloxacin	Nitrofurantion		TMP/SMX	
Echerichia coli	4	100	100	100		100	100				100	75				
Klebsiella sp	13	100	84.6	92.3	38.5	100	92.3	84.6	100	100	100	38.5	92.3		38.5	
Proteus sp	7	71.4	57.1	71.4		85.7	85.7			57.1	57.1		28.6		71.4	
Pseudomonas aeruginosa	13	100	83.3	92.3	91.7		100		81.8	100	100	30.8			69.2	
1		P	mizilli			Cenhal	enorine	0	I.com				Others			
						cepnare	sponns	Quind	lones				omers			
Gram (-)	# of patients	Penicillins	Ampicillin	Oxacillin	Nafcillin	Cephalothin	Ceftriaxone	Ciprofloxacin	Moxifloxacin	Gentamacin	Linezoid	Rifampin	Tetracycline	TMP/SMX	Vancomycin	Nitrofurantion
Gram (-) Staph avreus (all)	∞ # of patients	o Penicilins	Ampicillin	o Oxacillin	o Nafcillin	Cephalothin Cephalothin	Ceftriaxone	 Ciprofloxacin 	 Moxifloxacin 	Gentamacin 87.5	00 Linezoid	00 Rifampin	00 Tetracycline	TMP/SMX	Vancomycin 00	0 Nitrofurantion
Gram (-) Staph aureus (all) Methicillin Resistant (MRSA)	∞ ∞ # of patients	o Penicilins	Ampicillin	o o Oxacillin	o o Nafcillin	Cephalothin	Cefiriaxone	 Ciprofloxacin 	o o Moxifloxacin	Gentamaci 87.5 87.5	001 001 001	001 001 001	000 Tetracycline	00 TMP/SMX	001 Vancomycin	001 Nitrofurantion
Gram (-) Staph aureus (all) Methicillin Resistant (MRSA) Methicillin Susceptible (MRSA)	0 8 8 # of patients	o Penicillins	Ampicillin	0 Oxacillin	o o Nafcillin	Cephalothin	Ceftriaxone	Ciprofloxacin	o o Moxifioxacin	Gentamacin 87.5	000 Linezoid	000 100	001 Tetracycline	XWP/SMX	001 Vancomycin	001 Nitrofurantion

https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/quality-patientsafety/patient-safety-resources/resources/nhaspguide/module2/toolkit1/cat_sources.pdf

Where to find information?

- Up To Date
 - Quick resource
 - Very opinionated
 - References not great
- Lexi-Comp
 - Most widely used reference for drugs including dosing
 - Basically package insert dosing
 - Not necessarily those used in practice
 - Refer to guidelines when can
- Local policies and order sets are very helpful in many circumstances

Diagnostic Tests to Know

- Urinary antigens for CAP
 - S. pneumoniae
 - L. pneumophila
 - Most helpful if positive
 - Not affected by antibiotics like cultures
- Procalcitonin
 - Specific for bacterial infection
 - Cutoffs in general indicating no bacterial infection (serum)
 - CAP (< 0.25 ng/mL)
 - Sepsis (< 0.5 ng/mL)
 - Most helpful for discontinuing ABX, not withholding them
 - Renal dysfunction can falsely elevate
- Make sure tests are available onsite vs. send out
 - Delay in results if send out

Antibiotic Course

Courtesy of Justo J, PharmD, MS, BCPS, AQ-ID

Rapid Diagnostics

- Revolution occurring in microbiology labs
- Results in hours vs. days
- Many infectious syndromes available for testing
 - Gl
 - LRTI
 - Upper Respiratory
 - Bacteremia
 - Meningitis
- Screening tests as well (MRSA nares/*C. difficile*)
- Many platforms available commercially
- Slowly working to outpatient setting as well

Rapid Diagnostics

- Work with local lab/stewardship team to discern if available and how information is processed/communicated
- Most platforms do not give susceptibilities, only ID
- Many clinicians unaware of what technology is present
 - Failure of education
- Rapid is only "rapid" if information gets to prescriber
 - Someone has to disseminate result to team
 - Facilities vary in who communicates information
 - Nursing vs. Stewardship pharmacists

Foster RA et al. *Infect Control Hosp Epidemiol*. 2017;38:863-66. Porter AM et al. *Antimicrob Agents Chemother*. 2018;63:e01575-18.

Rapid Diagnostic Tests: Options

- Polymerase Chain Reaction (PCR)
 - Xpert C. difficile
- Multiplex PCR
 - Biofire FilmArray (Blood/Sputum/Meninges/GI): 1 hour
- Nanoparticle Probe Technology
 - Verigene (Blood): 2.5 hours
- Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)
- Multiplex FISH
 - Accelerate (Gives antimicrobial susceptibilities in 7 hours)
- Peptide Nucleic Acid Fluorescent in Situ Hybridization
 - PNA-Fish/PNA QuickFISH

Bauer KA et al. Clin Infect Dis. 2014;59:S134-45.

Rapid Molecular Tests: Bloodstream Infections

Organism: Gram Positive	PCR	Multiplex PCR*	Nanoparticle Probe	PNA FISH	MALDI-TOF
Staphylococcus aureus	mecA	mecA/C/MREJ	mecA	Х	Х
Coagulase-negative Staphylococcus spp.	х	mecA/C/MREJ	mecA	Х	х
Streptococcus spp.	х	х	х		х
Enterococcus spp.	х	vanA/B	vanA/vanB	Х	Х
Listeria		х	Х		х
Bacillus spp.		х			Х
Corynebacterium spp.		х			Х
Cutibacterium acnes		х			х
Lactobacillus spp.		Х			Х
Micrococcus spp.		х	Х		Х
Organism: Fungal	PCR	Multiplex PCR*	Nanoparticle Probe	PNA FISH	MALDI-TOF
Candida spp.		х		Х	Х
Cryptococcus spp.		Х			Х
Fusarium spp.		х			Х
Rhodotorula spp.		х			х

Rapid Molecular Tests: Bloodstream Infections

Organism: Gram Negative	PCR	Multiplex PCR*	Nanoparticle Probe	PNA FISH	MALDI-TOF
Acinetobacter spp.		CTX-M, KPC, IMP, VIM, Oxa-48, NDM, mcr-1	CTX-M, KPC, IMP, VIM, Oxa, NDM		х
Bacteroides fragilis		х			x
Enterobacteriales		CTX-M, KPC, IMP, VIM, Oxa-48, NDM, mcr-1	CTX-M, KPC, IMP, VIM, Oxa, NDM	х	х
Fusobacterium spp.		х			х
Haemophilusinfluenzae	х	х			х
Neisseria meningitidis	х	х			х
Pseudomonas aeruginosa		CTX-M, KPC, IMP, VIM, Oxa, NDM	CTX-M, KPC, IMP, VIM, Oxa, NDM	х	x
Stenotrophomonas maltophilia		CTX-M			Х

Notable Antimicrobials with Pearls

Vancomycin in 2022

- Over 60 years since introduction
- Approved based on open label data by FDA in 1958 on 15 patients
- "Drug of Choice" for serious MRSA infections in hospital
 - ~90% of use is empiric
- Inferior to beta-lactams for MSSA infections
 - Nafcillin or Cefazolin with cefazolin preferred in most patients
- Increased failure rates in MRSA isolates within the susceptible range (MIC $\leq 2mg/L)$

Stryjewski ME et al. Clin Infect Dis 2007;44:190-6. Chang FY et al. Medicine 2003; 82: 333-9. Hidayat LK et al. Arch Intern Med 2006; 166:2138-44.

Vancomycin

- Most use is inappropriate
 - Less than 10% of patients remain on vancomycin by day 3 of therapy
- Use reasonable if high risk for MRSA infection
 - Exception: Meningitis to cover ceftriaxone-resistant *S. pneumoniae*
- When does vancomycin make sense empirically?
 - High amounts of MRSA in patient ward/ICU (> 10-20% rates)
 - Previous colonization (CAP guidelines)
 - Prior intravenous antibiotic use within 90 days (HAP/VAP guidelines)
 - Recent influenza like illness
 - New infection in hospitalized patient (2 days or more in house)
 - Septic shock as part of clinical presentation
 - Treatment of acute bacterial skin/skin structure infection (ABSSSI)
 - In particular abscesses where MRSA very likely pathogen

Kalil AC et al. *Clin Infect Dis*. 2016;63:e61-111. Metlay JP et al. *Am J Respir Crit Care Med*. 200;e45-e67.

Vancomycin: Pitfalls and Perils

- Serum drug monitoring is becoming more painful
 - Area under the curve (AUC) based dosing vs. trough based dosing
 - May require 2 levels
 - Pharmacists typically manage dosing
- Nephrotoxicity has increased in last 10-15 years
 - Higher troughs for invasive MRSA infections (15-20 mcg/mL)
 - Probably additive when combined with piperacillin/tazobactam (Zosyn)
- Don't forget about Red Man's Syndrome
 - Pruritic, erythematous rash of face, neck, upper torso
 - Not allergic reaction
 - Management: Slow infusion +/- antihistamines
 - Tends to be more prominent in younger patients
- Patients can be vancomycin allergic (check profile)

Vancomycin: When to use alternative MRSA agents?

- Linezolid (Zyvox)
 - Excellent choice for MRSA pneumonia
 - PO dosage form
 - More affordable as generic
 - Monitor platelets
 - Avoid > 2 weeks of therapy
 - Monitor with SSRIs
- Daptomycin (Cubicin)
 - MRSA bacteremia/endocarditis
 - IV only
 - Good option for outpatient antimicrobial therapy (OPAT)
 - Monitor CPKs and muscle symptoms
 - NOT for Pneumonia
 - Lung surfactant inactivates

- Ceftaroline (Teflaro)
 - MRSA pneumonia AND bacteremia
 - Most expensive non-vancomycin MRSA agent in hospital
- Dalbavancin (Dalvance)
 - Long-acting agent to facilitate discharge
- <u>Costs of most newer agents are</u> <u>causing re-evaluation of their use vs.</u> <u>vancomycin</u>

How to stop vancomycin?

- Reassess patient risk factors once dust settles
- Nares MRSA screening
 - Rapid turnaround at most facilities
 - Tremendous negative predictive value (~95-99%)
 - Immunocompromised as well
 - Best data in pneumonia
 - Other sites of infection approximate 90-95% negative predictive value
 - Wound
 - Intrabdominal
 - Blood
 - Renal

Perreault SK et al. *Infect Control Hosp Epidemiol.* 2021;42:853-856. Mergenhagen KA et al. *Clin Infect Dis.* 2020;71:1142-1148.

Cefazolin (Ancef) is your friend

- Great coverage vs. streptococcal species and MSSA
- Extremely well tolerated
- Shares no side chains with penicillins or cephalosporins
 - Can be given to most patients with mild-moderate allergies
- Great option for ABSSSI if no abscess (e.g. cellulitis) or MSSA abscess
- Can easily change to PO cephalexin upon discharge
- Dosing: 2gm IV q8h for most patients
 - Adjust if renal dysfunction
 - In patients ≥ 120kg, can consider 3gm

Ceftriaxone (Rocephin)

- 3rd generation cephalosporin
- Excellent coverage vs. many GPC and GNR
 - Holes in Coverage: MRSA, Pseudomonas species, and GI anaerobic coverage
- Used frequently for a number of infections
 - UTI
 - STI
 - CAP
- Can be given IV or IM
- Dose
 - Typically 1gm or 2gm daily
 - 2gm IV daily superior for ICU patients
- High *C. difficile* risk compared to other agents
- No renal adjustment unless cirrhosis as well

Ackerman A, et al. *Antimicrob Agents Chemother.* 2020;64:e00066-20.

Carbapenems

• Meropenem

- Extremely broad agent typically reserved
- Drug of choice for ESBL-producing *E. coli* or *K. pneumoniae* bloodstream infections
- Dosing: 1g IV q8h or 500mg IV q6h
- May accumulate causing seizures (watch kidney function)
- Ertapenem
 - No activity vs. APE
 - Acinetobacter, Pseudomonas, Enterococcus species
 - Dosing: 1g IV once daily
 - Ideal for OPAT
- Neither agent available orally

Fluoroquinolones in 2022

- CNS
 - Hallucinations
 - Seizures
- Gl
 - N/V/D
 - C. difficile infection
- CV
 - QTc prolongation
 - Aortic Dissection or rupture (rare)

- Peripheral Nervous System
 - Neuropathy
- Musculoskeletal system
 - Tendonitis
 - Tendon rupture
 - Elderly
 - Systemic corticosteroids
 - Arthropathy
 - Avoid in most children
 - Myasthenia gravis
 - Contraindicated

Fluoroquinolones- Then why are they used?

- Excellent bioavailability
 - Useful for numerous infections, even Gram-negative bacteremia
 - E. coli pyelonephritis
- Tissue penetration excellent
 - Hence the side effect profile
- Only oral therapy with *Pseudomonas aeruginosa* coverage
- No serum drug monitoring required

Fluoroquinolone Options

- Ciprofloxacin
 - UTIs 🗸
 - Nosocomial pneumonia 🗸
 - Community-acquired pneumonia
 - Lacks coverage vs. S. pneumoniae
 - Pseudomonas coverage
 - Dosed BID
 - Adjust in renal dysfunction: QD

- Levofloxacin
 - UTIs 🗸
 - Nosocomial pneumonia 🗸
 - Community-acquired pneumoniamonotherapy
 - Unless admitted to ICU
 - Pseudomonas coverage
 - Atypical coverage
 - Dosed once daily
 - Adjust in renal dysfunction: Q48h

Moxifloxacin (Avelox)

- Minimally used
- Nearly completely hepatically metabolized
 - Not useful for UTIs
- Useful for CAP as monotherapy outpatient
- No Pseudomonas aeruginosa coverage
- Dosing: 400mg once daily (IV or PO)
- Useful for some STDs
 - Mycoplasma urealyticum due to levo/cipro resistance

Ways to Facilitate Discharge

IV to PO Conversions are In!

- Many IV antibiotic recommendations are based on tradition not evidence
- A growing number of disease states can be effectively and safely treated with oral antibiotics
 - Gram-negative bacteremia from UTI/pyelonephritis
 - Osteomyelitis
 - Many others
- Core Antimicrobial Stewardship Activity
- Bacteria don't respond better to IV antibiotics

CDC. Core Elements of Hospital Antibiotic Stewardship Programs. 2019.

Benefits of Oral Therapy

- Patient
 - Lower costs
 - Increased patient satisfaction and quality of life
 - Decreased risk of IV catheter-related infections
 - Decreased length of hospitalization
- Institution
 - Lower costs
 - Increased patient satisfaction and quality of life
 - Decreased risk of IV catheter-related infections
 - Decreased length of hospitalization

Chastain DB et al. ID Update in 2020. powerpak.com. (In Press)

Risks of Parenteral Antibiotic Therapy

- Infection, Infection, Infection
- Clotting Sequalae
- Pain
- Pump malfunctions
 - Resulting in incorrect infusions

Sax Paul. NEJM Journal Watch Blog. May 16th, 2013.

Agents with Comparable Serum/Tissue Concentrations

- TMP/SMX (Bactrim or Septra)
- Azithromycin
 - Absorption only 38% but those macrophages!
- Metronidazole
 - Why is this drug TID...?
- Doxy or Minocycline
- Clindamycin
 - Why is oral dose lower than IV?

- Linezolid (Zyvox)
- Fluoroquinolones
 - Don't forget about chelation interactions
 - Magnesium
 - Calcium
 - Zinc
 - Iron
 - MVIs
 - Tube feeds
- Fluconazole

Specific Pearls for these agents...

- Clindamycin
 - Excellent streptococcal activity and regional MRSA activity
 - Caution with pill esophagitis (PO)
 - Frequent dosing
 - Pediatric safety and effectiveness
 - Adjunct for necrotizing fasciitis
 - Decreases toxin production through ribosomal inhibition
- Metronidazole
 - Incredible anaerobic activity with decades of use
 - Metallic taste can be annoying
 - Long-term usage associated with peripheral neuropathy

Specific Pearls for these agents continued

- Doxycycline
 - Phototoxicity is real
 - Pill esophagitis can be problematic
- TMP/SMX
 - DS tablets are HUGE
 - Liquid dosage form available
 - Careful with higher dose calculations (10-20 mg/kg/day of TMP component)
- Linezolid (Zyvox)
 - Caution with serotonergic drug interactions
 - Bone marrow suppression increases ≥ 14 days of therapy

Dalbavancin (Dalvance)

- Long-acting lipoglycopeptide for ABSSSI
 - Oritavancin (Orbactiv or Kymrsa) also an option
- Safe in vancomycin allergic patients
- Half-life: 8.5 days (204 hours)
- Dosing: 1500mg IV X 1 dose (30 minute infusion)
- Can prevent admission to hospital from ED
- Can shorten length of stay (LOS)
 - Jones et al: Shortened LOS 4 days
- Fantastic option for persons who inject drugs (PWID)

Dalvance Package Insert. Jones BM et al. *JACCP*. 2019;2:477-481.

Fosfomycin

- Oral, little known agent for cystitis
 - Avoid in serious UTI including pyelonephritis
- Dissolve powder in water which is consumed
- Excellent coverage vs. MDR Gram-negative infections
 - VRE as well
- 3g one time dose or dose q48-72 hours in more complicated UTI
- Watch cost if sending home on therapy
 - Prior authorization often required

Penicillin Allergy

Background

- Penicillin allergy is one of the most frequently reported drug allergies
 - Approximately 10% of patients report hypersensitivity
 - Results in limited treatment options, increased healthcare costs, and increased resistance with the use of broad-spectrum agents
- Up to 90% of patients reporting hypersensitivity do not truly have a penicillin allergy
- Many patients therefore do not receive optimal therapy for infecting pathogen

Ann Allergy Asthma Immunol. 2010; 105:259-273.; Mayo Clinic Proc. Mar 2005; 80(3):405-410.; Ann of Allergy, Asthma, and Immunology. 2007; 98: 355-359.

Implications of PCN "Allergy"

- Increased adverse effects
- Increased hospital stays
 - Approximately one-half day longer
 - 30,000 hospital days/65 million in expenditures
- Development of MDR infections
 - 23.4% increase in CDI
 - 14.1% more MRSA
 - 30.1% increased VRE

MacFadden DR et al. Clin Infect Dis. 2016;63:904-10. Macy E et al. J Allergy Clin Immunol 2014;133:790-6.

Clinical Indications where Beta-lactams are best

- Surgical Prophylaxis
- Methicillin-susceptible *Staphylococcus aureus*
 - Superior to vancomycin for MSSA bacteremia
- Severe Pseudomonas infections
 - Often backbone at many institutions
- Group A streptococcal infections
 - Including invasive necrotizing infections
- Several STIs
 - Syphilis, PID, Gonococcal infections

Blumenthal KG et al. Clin Infect Dis. 2015;61:741-9.

Penicillin Allergy Assessment and Skin Testing (PAAST)

- Many facets all with benefit
- PAAST has many potential options depending on resources
 - Allergy record confirmation
 - Detailed allergy interview with EHR biopsy
 - Many times not documented in EHR
 - Side Chain Assessment for Cephalosporins
 - Graded Challenge
 - Direct Oral Challenge
 - Desensitization
 - Penicillin Skin Testing

Cross- Reactivity Assessment

- Penicillin cross-reactivity lower in recent assessments
 - Cephalosporins (< 2%)
 - Carbapenems (<1%)
- May obviate need for direct penicillin challenge/skin testing
- Side chains key tool in determining risk
- Shared R1 and R2 side chains good predictor

Jones BM et al. *Current Treatment Options Infect Dis*. 2019. In Press online. Romano A et al. *J Allergy Clin Immunol*. 2018;6:1662-72. Romano A et al. *NEJM*. 2006;354:2835-7.

	Beta-lactam Antibiotic Cross-Allergy Chart														AVOID ALL beta-lactam antibiotics if:					
Beta-lactams	*NUTIDIXOWV	AMPICILLIN	CLOXACILLIN	PENICILUN	PIPER ACILLIN*	CEFADROXIL	CEFAZOUN	CEPHALEXIN	CEFOXITIN	CEFPROZIL	CEFUROXIME	CEFIXIME	CEFOTAXIME	CEFTAZIDIME	CEFTRIAXONE	CEFEPIME	ERTAPENEM	IMIPENEM	MEROPENEM	Delayed beta-lactam antibiotic allergy causing: - interstitial nephritis - hepatitis - hemolytic anemia
AMOXICILLIN*		\boldsymbol{X}^{1}	X ⁵	X^4	X ³	X1	1	\mathbf{X}^{1}	1	X ²	1	1	1	1	1	~	1	1	1	 Delayed severe skin allergic reactions: Stevens-Johnson syndrome
AMPICILLIN	X1		X ⁵	X ⁴	X ³	X ²	~	χ^2	1	X ²	1	1	1	1	1	~	1	1	1	- toxic epidermal necrolysis - exfoliative dermatitis
CLOXACILLIN	X ⁵	X ⁵		X ⁵	X ⁵	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- acute generalized exanthematous pustulosis
PENICILLIN	X ⁴	X ⁴	X ⁵		X ⁵	~	~	~	X ³	~	~	~	~	1	~	~	1	1	1	- drug reaction with eosinophilia and systemic
PIPERACILLIN*	X ³	X ³	X ⁵	X ⁵		X ³	~	X ³	~	X ³	1	1	1	1	~	~	1	1	1	symptoms (DRESS)
CEFADROXIL	X1	X ²	~	~	X ³		~	X1	~	X ²		1	~	1	1	~	1	1	1	LEGEND:
CEFAZOLIN	~	~	~	~	~	1		1	1	~	1	1	~	1	~	~	~	1	~	Penicillins
CEPHALEXIN	X1	X ²	~	~	X ³	X1	~		1	X ²	~	1	~	1	1	~	~	~	~	1st Generation Cephalosporins
CEFOXITIN	~	~	~	X ³	~	~	~	1		~	X ²	1	~	1	1	~	1	1	1	2nd Generation Cephalosporins
CEFPROZIL	X ²	X ²	1	~	X ³	X ²	1	X ²	1		1	1	~	1	1	~	1	1	~	3rd Generation Cephalosporins
CEFUROXIME	~	~	1	1	1	1	1	~	X ²	1		X ³	X1	X ³	X1	X ²	~	1	1	4th Generation Cephalosporins
CEFIXIME	~	~	~	~	~	~	~	~	~	~	X ³		X ³	X ³	X ³	X ³	~	1	~	Carbapenems
CEFOTAXIME	~	1	~	~	1	~	1	1	1	1	X1	X ³		X ³	X1	\mathbf{X}^{1}	1	1	1	Different structure.
CEFTAZIDIME	1	1	1	1	1	1	1	1	1	~	X ³	X ³	X ³		X ³	X ³	~	1	~	Reaction likely based on side chain:
CEFTRIAXONE	1	1	1	1	×	~	1	×	~	1	X1	X ³	X1	X ³		X1	~	~	1	X ¹ Same side chain - clinical evidence of cross reaction.
CEFEPIME	~	~	~	~	~	~	~	~	~	~	X ²	X ³	X1	X ³	X1		1	1	1	X X Same side chain - Theoretical risk of cross reaction, no clinical x X Same side chain - Theoretical risk of cross reaction, no clinical
ERTAPENEM	1	1	1	~	1	1	~	~	1	1	1	1	1	1		~		X ⁵	X ⁵	X ³ Similar side chain - Potential for cross reaction.
IMIPENEM	1	1	1	1	1	1	1	1	1	1	1	1	~	1	1	~	X ⁵		X ⁵	Reaction likely based on Beta-lactam ring
MEROPENEM	~	1	1	~	1	1	1	1	1	-	1	1	1	1	1	~	X ⁵	X ⁵		X ⁴ Clinical evidence of cross reaction.
* Also applie	s to b	oeta-la	actan	nase i	nhibi	tor co	mbir	ation	s (am	oxici	llin-cl	avula	nate	and p	ipera	cillin	-tazo	bacta	m)	X5 Theoretical risk of cross reaction, no clinical studies.

DO NOT PRESCRIBE

Antibiotic Allergy Assessment Tool

- What is name of antibiotic that allergy is from?
- Details of reaction?
- How many years ago did reaction happen?
 - More than 10 years ago?
- How long post 1st dose did reaction occur?
- How was this reaction managed?
- Were you hospitalized?
- Other antibiotics received since?

Devchand M. et al. *J Allergy Clin Immunol Pract*. 2019;7:1063-65.e5.

Warfarin (Coumadin) and Antimicrobials

- Any antibiotic has potential to affect warfarin and ultimately INR
- Beta-lactams in general less effect
 - Nafcillin can \downarrow INR significantly
- Most antimicrobials increase INR and increase risk for bleeding
- Worst offenders that 1 INR (Avoid if possible)
 - TMP/SMX
 - FQs
 - Fluconazole
 - One dose okay for vaginal candidiasis
 - Clarithromycin
 - Rarely used except in *H. pylori* regimens

Clinical Syndromes: CAP Options

- CAP (non-ICU)
 - Ceftriaxone 2gm IV once daily PLUS azithromycin 500mg IV once daily
 - Max of 5 days azithromycin for 99% of patients due to long half-life
 - Severe penicillin allergy
 - Levofloxacin 750mg once daily
 - Moxifloxacin 400mg once daily
- CAP (ICU)
 - Ceftriaxone 2gm IV once daily PLUS azithromycin 500mg IV once daily OR
 - Ceftriaxone 2gm IV once daily PLUS levofloxacin 750mg IV once daily
- Doxycycline can be substituted for azithromycin when QTc an issue
- Discharge regimen: Amox/clav OR cefdinir OR cefpodoxime +/- azithromycin
 - Cefdinir (Omnicef) can be chelated like FQs or Doxy
- Many can get 5 days total of therapy!

Take Home Points

- There are often many good antibiotic choices for given patient
- Decision based on patient and pathogen/syndrome factors
- Local antibiogram important to have on hand for empiric prescribing
- Diagnostics are rapidly improving to quicken optimal prescribing
- Penicillin allergies are often incorrect and can be corrected
- Antimicrobial stewardship team ready to help

Questions?

Contact Information: cmbland@uga.edu