ROLE OF NUTRITION IN INJURY PREVENTION AND REHABILITATION

John Boesch MS, RD, LD, CSSD, CSCS

TNPerformanceNutrition@gmail.com

EXPERIENCE

Professional Experience

- USASOC Contract Performance Dietitian
- Owner TN Performance Nutrition
- Texas Tech Sports Dietitian M & W Basketball and Women's Indoor Volleyball

Certifications

- Registered Dietitian (RD)– Academy of Nutrition and Dietetics
- Certified Specialist in Sports Dietetics Academy of Nutrition and Dietetics
- Certified Specialist in Strength & Conditioning National Strength and Conditioning Association

DISCLAIMER

The views expressed in this presentation do not represent those of the DoD, USSOCOM, USASOC, or the 160th SOAR. Any mention of individual products or companies are for educational purposes and do not constitute an endorsement of that brand.

There are no financial conflicts of interest to report.

OBJECTIVES

- Understand a dietitian's role in injury prevention and rehab
- Be familiar with the impact of calorie intake on health and injury risk
- Recognize the importance of protein intake for maintenance of muscle and soft-tissue
- Identify nutritionally relevant micronutrients for injury risk

NUTRITIONAL ASSESSMENT

- Anthropometrics: body composition
- **Dietary:** energy and nutrient intake
- **Biochemical:** nutritionally relevant labs
- Clinical: physical signs & symptoms
- Environment: social and lifestyle

ANTHROPOMETRIC: BODY COMPOSITION

Method	Advantages	Disadvantages & Potential Errors	
Waist : Hip Ratio	 Convenient and inexpensive Possible for large groups and mobile 	 Variability in frame size/muscularity induces variability in results 	
Skin Folds	 Convenient and inexpensive Individual sites can be monitored Reliable when completed by trained technician 	 Samples subcutaneous fat only Can be intrusive for some athletes Conversion to body fat % introduces error 	
Bioelectrical Impedance Analysis	 Minimal technical skill needed by technician Rapid data acquisition Minimal subject involvement 	 Sensitive to fluid shifts and hydration status Should avoid exercise food, fluid and exercise for ≥12hr prior to testing 	

DIETARY: INTAKE ASSESSMENT

Method	Advantages	Disadvantages & Potential Errors
Diet recall	Quick assessmentLow patient burden	 May not reflect usual intake Relies on patient memory Usually leads to underreporting
Food frequency questionnaire (FFQ)	 May be more representative of usual intake Can be self-administered 	 Relies on memory Tendency for regression to the mean No information on meal timing/pattern
Diet history	 Often correlates with biochemical measures Useful for assessing usual intake and pattern of eating 	Interview is lengthy (up to an hour)Difficult to code for analysis
Food records	 Not dependent on memory Can provide detailed intake Multiple records more representative of usual intake 	 High subject burden Act of recording may alter diet Under-recording error

DIETARY: ENERGY INTAKE

- Athletes struggle to maintain optimal energy intake
 - Endurance athletes, gymnasts, military recruits

- Short-term (5 days) exposure to energy deficiencies may decrease BMD
 - Females athletes are particularly at risk
 - Infrequent / inadequate load bearing exercise

DIETARY: ENERGY AVAILABILITY (EA)^{11,13}

Energy Availability (EA) =

Energy Intake (EI) – Exercise Energy Expenditure(EEE) / Fat Free Mass(kg)

- Energy balance equation limitations:
 - Total daily energy expenditure is more difficult to assess than EEE
 - Energy balance assumes optimal physiological function

DIETARY: LOW ENERGY AVAILABILITY (LEA)

- Energy intake of ~40-45kcal/kg FFM/day = optimal EA
- In females, \leq 30kcal/kg FFM/day:
 - Muscle protein synthesis decreases
 - Bone mineralization declines
 - Insulin, T3 and IGF-1 concentrations decrease
 - Menstrual dysfunction
- Low EA is less defined in males

Adapted from De Souza MJ et al. 2014

Adapted from Nativ et al. 2021

RELATIVE ENERGY DEFICIENCY IN SPORT (RED-S)

- Also impairs:
 - Cognitive/physical performance
 - Endocrine/metabolic function
 - Immune function
 - GI Function

RECOVERY FROM LOW ENERGY AVAILABILITY

Recovery of Bone Mineral Density Process: Years **Recovery of Menstrual Status** Process: Months **Recovery of Energy Status** Outcomes: ↑Estrogen continues to inhibit Process: Days or Weeks Outcomes: bone resorption Outcomes: 1 Reproductive hormones ↑ Energy status will stimulate ↑Energy status will stimulate anabolic anabolic hormones (IGF-1) and Estrogen exerts an antihormones (IGF-1) and bone formation bone reformation resorptive effect on bone ↑Energy status will reverse energy conservation adaptations

CAUSES OF LOW ENERGY AVAILABILITY

- Eating disorder/disordered eating
- Compulsive or excessive exercise
- Lack of understanding of energy needs
- Low energy dense diet
- GI disorder

TREATMENT OF LOW ENERGY AVAILABILITY

- Increase calories by 200-600kcals/day
 - Goal of at least 45kcal/kg of FFM

• Decrease exercise energy expenditure

- Return to body weight associated with normal menses/metabolic health
 - 0.5kg every 7-10 days

De Souza MJ et al. 2014

TREATMENT OF LOW ENERGY AVAILABILITY

Kuikman MA et. al. 2021

DIETARY: PROTEIN

- Disuse/immobilization from injury:
 - \downarrow muscle protein synthesis (MPS)
 - ↑ muscle protein breakdown (MPB)
 - \downarrow muscle mass, strength and function
 - \downarrow tendon structure and function

Decreased muscle strength in as little as 36 hours of physical inactivity

DIETARY: PROTEIN

• Essential Amino Acids (EAA's) are necessary to stimulate MPS

- 0.25-0.30g/kg body mass maximizes MPS
 - Ex: 175lbs athlete = 20-24g protein

- >2.0g/kg body mass may be required to prevent muscle loss
 - Type, dose, frequency?

DIETARY: COLLAGEN AND SOFT-TISSUE INJURY

- Increasing collagen synthesis can improve recovery
- Collagen rich foods or supplements can increase collagen synthesis
 - Rich in hydroxyproline, proline, glycine, and hydroxylysine
 - Gelatin, bone broth, collagen peptides
- Protocol: 15g collagen + 48mg vitamin C prior to physical activity

DIETARY: BONE STRESS INJURY

- Paradox of exercise and stress fracture (SFx) risk
- SFx risk:
 - Female military recruits: 1.6% 21.0%
 - Male military recruits: 0.2% 5.2%
 - Track and field athletes: 10.0 % 31.0%
- Estimated cost of \$26 million lost over 1 year at one U.S Army base

DIETARY: CALCIUM AND VITAMIN D SUPPLEMENTATION

- 1. Calcium and vitamin D intake is typically less than optimal
- 2. Females <30yr still can increase peak bone mass
- **3.** Intense training increases calcium demands
- 4. Substantial cutaneous calcium losses occur during training
- **5.** Micro-fracture repair through remodeling requires calcium

BIOCHEMICAL: VITAMIN D

- 36-57% of Americans are Vitamin D deficient
- Assessed via 25-hydroxyvitamin D
 - Deficiency: <20ng/mL
 - Insufficiency: 21-29ng/mL
 - Sufficient: 30-39ng/mL
 - Optimal: 40-50ng/mL

BIOCHEMICAL:

- Suboptimal vitamin D status is linked to:
 - Decreased calcium absorption
 - Increased parathyroid hormone
 - acute illness
 - inflammatory injury
 - Increased incidence of stress fractures
 - muscle pain/weakness or poor performance

BIOCHEMICAL: VITAMIN D

- Risk factors for low 25-OH(D):
 - Living above 35°N latitude in winter months
 - Darker skin tones are at higher risk for vitamin D deficiency
 - Regular sunscreen use

- Prevention:
 - Sensible sun exposure
 - Regular vitamin D supplementation (1,500-2,000 IU/day)

DIETARY: CALCIUM AND VITAMIN D

Calcium and Vitamin D Supplementation Decreases Incidence of Stress Fractures in Female Navy Recruits

Joan Lappe,¹ Diane Cullen,¹ Gleb Haynatzki,¹ Robert Recker,¹ Renee Ahlf,² and Kerry Thompson²

- Randomized, placebo-controlled trial
 - Treatment group (n=2608) received 2,000mg calcium and 800IU vitamin D
- Total of 309 (5.9%) recruits diagnosed with stress fractures over 8 weeks
 - 20% lower SFx risk in treatment group (6.8% versus 8.6%, p = 0.02)
 - 91% greater SFx risk in recruits with amenorrhea

BIOCHEMICAL: 25-HYDROXY VITAMIN D

CATEGORY	LAB VALUE (ng/mL)	SUPPLEMENTATION	RE-EVALUATION
Deficiency	<u><</u> 20	6,000 – 10,000 IU D3/day	60-90 days
Insufficiency	21-29	4,000 – 10,000IU D3/day	90 days
Sufficient, yet suboptimal	30-39	3,000-4,000IU D3/day	90 days
Optimal	40-50	1,000-2,000IU D3/day	Annually

SUMMARY

- <30kcal/kg/FFM increases injury risk and impairs recovery
- Optimal protein intake can minimize LBM loss during rehab
- Calcium supplementation may be necessary during intense training
- 25-hyroxyvitamin D should be assessed in at-risk populations

REFERENCES

- Cannell JJ, Hollis BW, Sorenson MB, Taft TN, Anderson JJ. Athletic performance and vitamin D. *Med Sci Sports Exerc*. 2009;41(5):1102-1110. doi:10.1249/MSS.0b013e3181930c2b
- De Souza MJ, Nattiv A, Joy E, et al. 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play
 of the Female Athlete Triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International
 Conference held in Indianapolis, Indiana, May 2013. Br J Sports Med. 2014;48(4):289. doi:10.1136/bjsports-2013-093218
- Fredericson M, Kussman A, Misra M, et al. The Male Athlete Triad-A Consensus Statement From the Female and Male Athlete Triad Coalition Part II: Diagnosis, Treatment, and Return-To-Play. *Clin J Sport Med*. 2021;31(4):349-366. doi:10.1097/JSM.000000000000948
- Kuikman MA, Mountjoy M, Stellingwerff T, Burr JF. A Review of Nonpharmacological Strategies in the Treatment of Relative Energy Deficiency in Sport. Int J Sport Nutr Exerc Metab. 2021;31(3):268-275. Published 2021 Jan 19. doi:10.1123/ijsnem.2020-0211
- Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741-749. doi:10.1359/jbmr.080102
- Larson-Meyer DE, Woolf K, Burke L. Assessment of Nutrient Status in Athletes and the Need for Supplementation. Int J Sport Nutr Exerc Metab. 2018;28(2):139-158. doi:10.1123/ijsnem.2017-0338
- Mountjoy M, Sundgot-Borgen J, Burke L, et alThe IOC consensus statement: beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S). British Journal of Sports Medicine 2014;48:491-497.

REFERENCES

- Nattiv A, De Souza MJ, Koltun KJ, et al. The Male Athlete Triad-A Consensus Statement From the Female and Male Athlete Triad Coalition Part 1: Definition and Scientific Basis. *Clin J Sport Med.* 2021;31(4):335-348. doi:10.1097/JSM.00000000000946
- O'Leary TJ, Wardle SL, Greeves JP. Energy Deficiency in Soldiers: The Risk of the Athlete Triad and Relative Energy Deficiency in Sport Syndromes in the Military. *Front. Nutr.* 2020; 7(142). doi: 10.3389/fnut.2020.00142
- Papageorgiou M, Dolan E, Elliott-Sale KJ, Sale C. Reduced energy availability: implications for bone health in physically active populations. *Eur J Nutr.* 2018;57(3):847-859. doi:10.1007/s00394-017-1498-8
- Shaw G, Lee-Barthel A, Ross ML, Wang B, Baar K. Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. *Am J Clin Nutr*. 2017;105(1):136-143. doi:10.3945/ajcn.116.138594
- Sikora-Klak J, Narvy SJ, Yang J, Makhni E, Kharrazi FD, Mehran N. The Effect of Abnormal Vitamin D Levels in Athletes. *Perm J*. 2018;22:17-216. doi:10.7812/TPP/17-216
- Tipton KD. Nutritional Support for Exercise-Induced Injuries. Sports Med. 2015;45 Suppl 1:S93-S104. doi:10.1007/s40279-015-0398-4
- Townsend JR, Jones MD, Morimune JE, Zimmerman GA, Hart TL. Effects of a Liquid or Capsule Multivitamin on Vitamin D Status in Active Males and Females. *J of Exer and Nutr.* 2020; 3(4).