

Advo female, with a past medical history of breast cancer, presents to the hospital with a 5 hour history of chest pain and shortness of breath. PMH: Breast CA s/p R mastectomy (in remission), hypothyroidism Medications: Ortho Tri-Cyclen Lo, Levothyroxine SH: Smokes ½ pack of cigarettes per day, occasional EtOH use. She just came back from a vacation to Hawaii with her family. Vitals: HR: 116, RR: 30, BP: 110/69, Temp: 37.5°C, O2 sat: 85% on RA PE: She is is moderate respiratory distress and clutching her chest. Feels like she "can't catch her breath". Lungs sound clear.

8/4/2022

WHICH TYPE OF RESPIRATORY FAILURE DOES THIS PATIENT HAVE?

A. HYPOXEMIC

B. HYPERCAPNIC

C. MIXED

D. "I HAVE NO IDEA…BUT I'M WORRIED"

HYPOXEMIC RESPIRATORY FAILURE

• PaO2 < 80mmHg

Abnormal PaO2/FiO2 ratio

Hypoxia = state of low O2 supply (high altitude)

Hypoxemia = low arterial O2 tension (state of low arterial O2 supply)

Common causes of hypoxia:

- High altitude
- Ventilation/perfusion mismatch
- Impaired gas diffusion
 - · Usually associated with an infiltrate on imaging
- Right to left intra-cardiac shunting
 Typically doesn't improve with supplemental O2
- Hypoventilation
 Alveolar to arterial (A-a) oxygen gradient should not change

FCCS 5th Ed. SCCM, 2012. pp 5-7

OXYGEN DELIVERY DEVICES

HIGH FLOW NASAL CANNULA

- Heated & humidified oxygen
- Rates up to 60 L/min & 1.0 FiO2 (100%)
- · Improves work of breathing
- Enhances gas exchange
- Provides some positive pressure
- Reduces dead space
- May help improve mucociliary clearance

MRS. KENT

- Diagnosed with an acute pulmonary embolism.
- Initially placed on nasal cannula, but with ongoing hypoxia was transitioned to high-flow nasal cannula.
- Heparin drip initiated.

PULMONARY EMBOLISM

DEFINITIONS

SUBMASSIVE PE	MASSIVE PE
Intermediate-risk PE	High-risk PE
RV dysfunction and/or troponin elevation, but no hypotension	Sustained hypotension (SBP<90 for at least 15 minutes or requiring inotropic support, not due to a cause other than PE), pulselessness, or persistent profound bradycardia

MR. JONES

75yo male, with a past medical history of **COPD**, type 2 **diabetes**, and HLD presents to the ER with a 3 day history of **"worsening shortness of breath"**.

- Medications: Metformin, Albuterol PRN, Advair Diskus
- <u>SH:</u> 50 pack year history of smoking cigarettes and cigars. Daily EtOH use. He is retired and lives at home with his wife.
- <u>Vitals</u>: HR: 105, RR: 34, BP: 119/75 Temp: 37.8°C O2 sat: 87% on RA
- He is in moderate distress, using accessory muscles, and wheezing.

NR. JONESIn the ER, he received: Albuterol/ipratropium nebulizer IV Solu-medrol V Ceftriaxone + Azithromycin Despite this, he continues to be hypoxic. His O2 sat is 83% on 4L NC.

WHAT WOULD BE THE NEXT STEP IN YOUR TREATMENT PLAN?

A. ↑ O2 to 6L VIA NASAL CANNULA

B. START HIGH-FLOW NASAL CANNULA

C. START BIPAP

D. INTUBATE

NPPV

Advantages

- Reduced need for sedation
- Preservation of airway-protective reflexes
- · Avoidance of upper airway trauma
- Decreased incidence of nosocomial sinusitis and pneumonia
- Improved patient comfort
- Shorter length of stays in ICU and hospital
- Improved survival

Disadvantages

- Claustrophobia
- Increased workload for respiratory practitioner
- Facial/nasal pressure lesions
- · Unprotected airway
- · Inability to suction deep airway
- · Gastric distention
- · Delay in intubation

Mechanical Ventilation. FCCS 5th Ed. SCCM, 2012. pp 5-3

BILEVEL POSITIVE AIRWAY PRESSURE (BIPAP)

INDICATIONS	CONTRAINDICATIONS
Hypercapnia and acidosis	Cardiac or respiratory arrest
Cardiogenic pulmonary edema • Hemodynamic instability	
COPD/asthma exacerbation	Inability to protect the airway
 Weaning and post-extubation failure 	Patient who is unable to cooperate
Post surgical period	Severe encephalopathy
Obesity hypoventilation syndrome	Significant agitation
Neuromuscular disorders	High risk of aspiration
 Poor alveolar oxygen exchange 	Active upper GI hemorrhage
	Facial trauma, recent surgery and/or burns

Liesching, Timothy et al. CHEST, Volume 124, Issue 2, 699 - 713 ©2021 Mayo Foundation for Medical Education and Research | slide-29

BIPAP HOW DOES IT WORK?

- Utilizes two levels of positive airway pressure combining pressure support ventilation (PSV) and continuous positive airway pressure (CPAP)
 - The PSV modality is the IPAP (inspiratory positive airway pressure)
 - The CPAP modality is the **EPAP** (expiratory positive airway pressure)
- The difference between these two pressure levels (Δ P) determines tidal volume generated.

A 28yo female presented as a transfer from an outside hospital with shortness of breath, cough and occasional hemoptysis. She was recently diagnosed with SLE the previous year, but was not on any immunosuppression at this time. She was hemodynamically stable on arrival. Given IV Solu-Medrol. The next day, during the bronchoscopy, she developed massive hemoptysis 2/2 diffuse alveolar hemorrhage.

Causes of Hemoptysis	
Cryptogenic	
Pulmonary	 Airway infections (bronchitis, viral and bacterial PNA, lung abscess) Bronchial carcinoma/Mets Bronchiectasis/CF Pulmonary edema/mitral stenosis TB Invasive aspergillosis Benign bronchial tumors Vasculitis
Cardiovascular	 Pulmonary artery embolism Vascular malformations Idiopathic pulmonary hemosiderosis Septic embolism/right heart endocarditis Pulmonary HTN
Other	Iatrogenic: lung biopsy, R heart cath, CT placement, thoracentesis, radiation therapy Medications, anticoagulation treatment, thrombolytic therapy Trauma/lung contusion Foreign body Coagulopathy Thrombocytopenia Dtsch Arztebl Int 2017;

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

INITIAL MANAGEMENT OF HEMOPTYSIS

- Monitor vital signs closely
- Secure airway first!
 - If intubation is required, use a large diameter ET tube, or consider unilateral intubation if indicated.
- Place patient bleeding side down
- Sedation/anxiolysis or paralytics if necessary
- Reverse any coagulopathy transfuse blood products if indicated.

- Mild moderate hemoptysis can be treated conservatively
- Bronchoscopy
 - Typically first line for diagnostic (localize site of bleeding) and therapeutic intervention
- Bronchial artery embolization
- Surgery

Dtsch Arztebl Int 2017; 114; 371-81

WHAT IS THE MOST APPROPRIATE DIAGNOSIS?

A. Community-Acquired Pneumonia (CAP)

B. Ventilator-Associated Pneumonia (VAP)

C. Hospital-Acquired Pneumonia (HAP)

D. Healthcare-associated pneumonia (HCAP)

8/4/2022

CLASSIFICATION OF PNEUMONIA

Community-acquired pneumonia (CAP)

Hospital-acquired pneumonia (HAP)

Ventilator-associated pneumonia (VAP)

There is no longer a healthcare-associated pneumonia (HCAP) classification.

2016 HAP/VAP Clinical Practice Guidelines by the IDSA and ATS. CID 2016:1-43. a

<section-header><section-header><list-item><list-item><list-item>

WHICH ANTIBIOTICS SHOULD WE START FOR MR. WILSON?

- A. Piperacillin-tazobactam and Vancomycin
- B. Ciprofloxacin
- C. Ceftriaxone and Azithromycin
- D. Azithromycin

RISK FACTORS FOR MRSA & PSEUDOMONAS

MRSA Risk Factors

• End stage renal disease

Empiric Treatment

Vancomycin

Linezolid

- IV drug abuse
- Prior antibiotic use

Pseudomonas Risk Factors

- Prior use of antibiotics (within 90 days)
- H/o Pseudomonas infection w/in 1 year
- Longer hospital stay
- ICU
- Mechanical ventilation
- Immunosupression
- Cystic Fibrosis
- HIV/AIDS
- Alcohol abuse
- COPD

Empiric Treatment Pipercillin-tazobactam Cefepime Ceftazidime Aztreonam Meropenem Imipenem

WHERE DID HCAP GO?

• The Drug-Resistance in Pneumonia (DRIP) score was found to be more effective than the HCAP criteria for identifying risk of drug-resistant pathogens in pneumonia, and the need for broad-spectrum antibiotic use in CAP

• Combined with the use of nasal MRSA swab for de-escalation, which showed reduction in vancomycin use

ASM journals 2016. 60;5: https://doi.org/10.1128/AAC.03071-15

DRUG-RESISTANCE IN PNEUMONIA (DRIP) SCORE

Factors	Points
Major Risk Factors	
Antibiotic use (prior 60 days)	2
Long-term care resident	2
Tube feeding	2
H/o infection with MDR pathogen (prior 12 months)	2
Minor Risk Factors	
Hospitalization (prior 60 days)	1
Chronic pulmonary disease	1
Poor functional status	1
Gastric acid suppression	1
Wound care	1
MRSA colonization (prior 12 months)	1
Total Points Possible	14

<4 = can be treated without
broad-spectrum antibiotics</pre>

≥4 = more likely to require broad-spectrum antibiotics

ASM journals 2016. 60:5: https://doi.org/10.1128/AAC.03071-15

TREATMENT OF CAP DURATION OF TREATMENT Shorter duration therapy leads to: ↓ antibiotic resistance ↓ antibiotic related complications ↓ cost ↑ patient compliance Minimum recommended treatment : 5 days Applies to patients with severe CAP, as well If CAP is due to MRSA or Pseudomonas, treat for 7 days.

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

SEVERE CAP Major Criteria • Need for invasive mechanical ventilation Late admission to ICU • Septic shock with need for vasopressors significantly \uparrow 30 day mortality Minor Criteria • Respiratory rate ≥ 30 breaths/min • Severe CAP = • PaO2/FiO2 ratio ≤ 250 1 Major or 3+ Minor Criteria Multilobar infiltrates Confusion/disorientation • Uremia (BUN≥20) • Leukopenia (WBC <4,000) • Thrombocytopenia (Platelets <100,000) • Hypothermia (Core temp <36°C) CID 2007:44 (Suppl 2)

BRONCHOSCOPY

- When should you consider bronchoscopy?
 - Immunocompromised host
 - Non-resolving pneumonia
 - Nodular/cavitary lesions on imaging
- Can be both diagnostic and therapeutic
- Consider risk of airway/respiratory compromise in patients with high O2 requirement.
- Risks of Bronchoscopy:
 - Difficult to truly assess
 - Operator and patient dependent
 - Risks increase when biopsies are performed

2007 VS.	2019 CAP	GUIDELINES
----------	----------	------------

Table 2. Differences between the 2019 and 2007 American Thoracic Society/Infectious Diseases Society of America Community-acquired Pneumonia Guidelines

Recommendation	2007 ATS/IDSA Guideline	2019 ATS/IDSA Guideline
Sputum culture	Primarily recommended in patients with severe disease	Now recommended in patients with severe disease as well as in all inpatients empirically treated for MRSA or <i>Pseudomonas aeruginosa</i>
Blood culture	Primarily recommended in patients with severe disease	Now recommended in patients with severe disease as well as in all inpatients empirically treated for MRSA or <i>P.</i> <i>aeruginosa</i>
Macrolide monotherapy	Strong recommendation for outpatients	Conditional recommendation for outpatients based on resistance levels
Use of procalcitonin	Not covered	Not recommended to determine need for initial antibacterial therapy
Use of corticosteroids	Not covered	Recommended not to use. May be considered in patients with refractory septic shock
Use of healthcare-associated pneumonia category	Accepted as introduced in the 2005 ATS/IDSA hospital-acquired and ventilator-associated pneumonia guidelines	Recommend abandoning this categorization. Emphasis on local epidemiology and validated risk factors to determine need for MRSA or <i>P. aeruginosa</i> coverage. Increased emphasis on deescalation of treatment if cultures are negative
Standard empiric therapy for severe CAP	β-Lactam/macrolide and β-lactam/fluoroquinolone combinations given equal weighting	Both accepted but stronger evidence in favor of β-lactam/macrolide combination
Routine use of follow-up chest imaging	Not addressed	Recommended not to obtain. Patients may be eligible for lung cancer screening, which should be performed as clinically indicated

Metlay JP, et al. Amer Journal of Resp and Crit Care Medicine, 2019 ©2021 Mayo Foundation for Medical Education and Research | slide-55

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item>

MR. WILSON

• <u>Vitals:</u> HR: 112, RR: 32, BP: 108/73, Temp: 37.6 O2: 83% on 6L NC

• <u>ABG:</u> pH = 7.37, pCO2 = 35, pO2 = 40

• <u>Echo</u> (from earlier in the day): EF 65%, 1/4 diastolic dysfunction, normal RV function, L atrial enlargement

8/4/2022

WHAT IS THE MOST APPROPRIATE DIAGNOSIS? A. PNEUMONIA B. PULMONARY EDEMA C. ARDS D. "I HAVE NO IDEA...BUT I'M VERY WORRIED"

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS)

Berlin Criteria

- Acute onset
- Bilateral opacities on CXR or CT within 24 hours
- No evidence of left heart failure or fluid overload
- Moderate to severe impairment of oxygenation (**PaO2/FiO2 ≤300**)
- Presence of a predisposing condition

ARDs Definition Task Force. ARDS. JAMA 2012; 307:2526-2533

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS)

Severity of ARDS	PaO2/FiO2 (mmHg)
Mild	200 – 300
Moderate	100 – 200
Severe	≤100

ARDs Definition Task Force, ARDS, JAMA 2012; 307:2526-2533

TREATMENT OF ARDS

• Identify the initial systemic or pulmonary insult, and treat underlying cause

Supportive Care

- Corticosteroids
- Conservative fluid strategy
- Lung protective ventilation (low tidal volumes, high PEEP)
- Prone positioning
- +/- ECMO (in select patients)

Griffiths MJD, et al. BMJ Open Respiratory Research 2019.

LUNG POINT OF CARE ULTRASOUND (POCUS)

Lung US can assess for:		CXR	US
 Pulmonary edema Consolidation/pneumonia Pleural effusions Pneumothorax 	Pulmonary edema	56.9%	85-92%
	Pneumonia	38-64%	85-96%
	Pneumothorax	39-50%	78-90%

Lung ultrasound can provide the correct diagnosis in **90.5%** of cases.

Lichtenstein DA, Mezière GA. Relevance of Lung Ultrasound in the Diagnosis of Acute Respiratory Failure. Chest. 2008;134(1):117-125. doi:10.1378/chest.07-2800.

TAKE HOME POINTS

- When a patient is in respiratory distress, first determine if it is hypoxic, hypercapnic, or mixed respiratory failure.
- Use the most appropriate form of supplemental O2.
- Consider high-flow nasal cannula, even in COPD exacerbations (under the right conditions).
- NPPV can be an extremely helpful tool when used in the right clinical setting.
- With hemoptysis, turn patient bleeding side down, and secure an airway first.
- There is no longer a "healthcare-associated" classification of pneumonia. Use the DRIP score to assess need for broad-spectrum antibiotics in CAP.
- In a patient with refractory hypoxemia, consider ARDS in your differential and try to recognize and treat as quickly as possible.

QUESTIONS?

Anderson.Adrijana@mayo.edu